Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Related tags

Deep LearningTSP-HAC
Overview

Paper

For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted at AAAI 2022. If this code is useful for your work, please cite our paper:

@inproceedings{zhang2022learning,
  title={Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum},
  author={Zeyang Zhang and Ziwei Zhang and Xin Wang and Wenwu Zhu},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}

Dependencies

Require python>=3.8

Install other packages

pip install torch matplotlib scipy tqdm tensorboard sklearn jupyter jupyterlab pandas gurobipy seaborn tensorboardX

And follow https://github.com/wouterkool/attention-learn-to-route to install Gurobi Solver. In short, it can be installed by conda:

conda config --add channels http://conda.anaconda.org/gurobi
conda install gurobi

Or manually: Find and download the package in https://anaconda.org/Gurobi/gurobi/files?page=0, then use conda install.

Usage

  1. generate data This step generates necessary TSP Instances for experiments.
python src/generate_data.py --problem tsp --graph_sizes 50 --name val_mg --seed 2222 --dataset_size 10000 --generate_type mg
python src/generate_data.py --problem tsp --graph_sizes 50 --name train --seed 1111 --dataset_size 10000 --generate_type random -f 
python preprocess.py
  1. preliminary study This step shows the optimality gaps of TSP instances generated from gaussian mixture generator as $c_{\text{dist}}$ increases
python preliminary.py
  1. Hardness-adaptive generator This step shows the optimality gaps of TSP instances generated from hardness-adaptive generator as $\eta$ increases
python hag.py
  1. Hardness-adaptive Curriculum This step shows the optimality gaps with or without hardness-adaptive curriculum. In this case, training data and testing data is from uniform and gaussian mixture respectively. Replace 'X' with GPU device id.
CUDA_VISIBLE_DEVICES=X python main.py --train_type uniform --iters 15
CUDA_VISIBLE_DEVICES=X python main.py --train_type hardness-adaptive --iters 15
  1. showcase This step shows some cases of instances generated by hardness-adaptive generator.
python showcase.py

Acknowledgements

This repo is modified mainly based on the code https://github.com/wouterkool/attention-learn-to-route.

Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

cv516Buaa 9 Nov 07, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
Mengzi Pretrained Models

中文 | English Mengzi 尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。 我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。

Langboat 424 Jan 04, 2023
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023