DUE: End-to-End Document Understanding Benchmark

Overview

This is the repository that provide tools to download data, reproduce the baseline results and evaluation.

What can you achieve with this guide

Based on this repository, you may be able to:

  1. download data for benchmark in a unified format.
  2. run all the baselines.
  3. evaluate already trained baseline models.

Install benchmark-related repositories

Start the container:

sudo userdocker run nvcr.io/nvidia/pytorch:20.12-py3

Clone the repo with:

git clone [email protected]:due-benchmark/baselines.git

Install the requirements:

pip install -e .

1. Download datasets and the base model

The datasets are re-hosted on the https://duebenchmark.com/data and can be downloaded from there. Moreover, since the baselines are finetuned based on the T5 model, you need to download the original model. Again it is re-hosted at https://duebenchmark.com/data. Please place it into the due_benchmark_data directory after downloading.

TODO: dopisać resztę

2. Run baseline trainings

2.1 Process datasets into memmaps (binarization)

In order to process datasets into memmaps, set the directory downloaded_data_path to downloaded data, set memmap_directory to a new directory that will store binarized datas, and use the following script:

./create_memmaps.sh

2.2 Run training script

Single training can be started with the following command, assuming out_dir is set as an output for the trained model's checkpoints and generated outputs. Additionally, set datas to any of the previously generated datasets (e.g., to DeepForm).

python benchmarker/cli/l5/train.py \
    --model_name_or_path ${downloaded_data_path}/t5-base \
    --relative_bias_args="[{\"type\":\"1d\"}]" \
    --dropout_rate 0.15 \
    --model_type=t5 \
    --output_dir ${out_dir} \
    --data_dir ${memmap_directory}/${datas}_memmap/train \
    --val_data_dir ${memmap_directory}/${datas}_memmap/dev \
    --test_data_dir ${memmap_directory}/${datas}_memmap/test \
    --gpus 1 \
    --max_epochs 30 \
    --train_batch_size 1 \
    --eval_batch_size 2 \
    --overwrite_output_dir \
    --accumulate_grad_batches 64 \
    --max_source_length 1024 \
    --max_target_length 256 \
    --eval_max_gen_length 16 \
    --learning_rate 2e-4 \
    --lr_scheduler constant \
    --warmup_steps 100 \
    --trim_batches \ 
    --do_train \
    --do_predict \ 
    --additional_data_fields doc_id label_name \
    --early_stopping_patience 20 \
    --segment_levels tokens pages \
    --optimizer adamw \
    --weight_decay 1e-5 \
    --adam_epsilon 1e-8 \
    --num_workers 4 \
    --val_check_interval 1

The models presented in the paper differs only in two places. The first is the choice of --relative_bias_args. T5 uses [{'type': '1d'}] whereas both +2D and +DALL-E use [{'type': '1d'}, {'type': 'horizontal'}, {'type': 'vertical'}]

Moreover +DALL-E had --context_embeddings set to [{'dimension': 1024, 'use_position_bias': False, 'embedding_type': 'discrete_vae', 'pretrained_path': '', 'image_width': 256, 'image_height': 256}]

3. Evaluate

3.1 Convert output to the submission file

In order to compare two files (generated by the model with the provided library and the gold-truth answers), one has to convert the generated output into a format that can be directly compared with documents.jsonl. Please use:

python to_submission_file.py ${downloaded_data_path} ${out_dir}

3.2 Evaluate reproduced models

Finally outputs can be evaluated using the provided evaluator. First, get back into main directory, where this README.md is placed and install it by cd due_evaluator-master && pip install -r requirement And run:

python due_evaluator --out-files baselines/test_generations.jsonl --reference ${downloaded_data_path}/DeepForm

3.3 Evaluate baseline outputs

We provide an examples of outputs generated by our baseline (DeepForm). They should be processed with:

python benchmarker-code/to_submission_file.py ${downloaded_data_path}/model_outputs_example ${downloaded_data_path}
python due_evaluator --out-files ./benchmarker/cli/l5/baselines/test_generations.txt.jsonl --reference ${downloaded_data_path}/DeepForm/test/document.jsonl

The expected output should be:

       Label       F1  Precision   Recall
  advertiser 0.512909   0.513793 0.512027
contract_num 0.778761   0.780142 0.777385
 flight_from 0.794376   0.795775 0.792982
   flight_to 0.804921   0.806338 0.803509
gross_amount 0.355476   0.356115 0.354839
         ALL 0.649771   0.650917 0.648630
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained

Hassan Dbouk 7 Dec 05, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022