Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Related tags

Deep LearningDeep-RTC
Overview

Deep-RTC [project page]

This repository contains the source code accompanying our ECCV 2020 paper.

Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier
Tz-Ying Wu, Pedro Morgado, Pei Wang, Chih-Hui Ho, Nuno Vasconcelos

@inproceedings{Wu20DeepRTC,
	title={Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier},
	author={Tz-Ying Wu and Pedro Morgado and Pei Wang and Chih-Hui Ho and Nuno Vasconcelos},
	booktitle={European Conference on Computer Vision (ECCV)},
	year={2020}
}

Dependencies

  • Python (3.5.6)
  • PyTorch (1.2.0)
  • torchvision (0.4.0)
  • NumPy (1.15.2)
  • Pillow (5.2.0)
  • PyYaml (5.1.2)
  • tensorboardX (1.8)

Data preparation

These datasets can be downloaded from the above links. Please organize the images in the hierarchical folders that represent the dataset hierarchy, and put the root folder under prepro/raw. For example,

prepro/raw/imagenet
--abstraction
----bubble
------ILSVRC2012_val_00014026.JPEG
------ILSVRC2012_val_00000697.JPEG
...
--physical_entity
----object
...

While CIFAR100 and iNaturalist have released taxonomies, we built the tree-type taxonomy of AWA2 and ImageNet with WordNet. All the taxonomies are provided in prepro/data/{dataset}/tree.npy, and the data splits are provided in prepro/splits/{dataset}/{split}.json. Please refer to prepro/README.md for more details. After the raw images are managed hierarchically, run

$ ./prepare_data.sh {dataset}

where {dataset}=awa2/cifar100/imagenet/inaturalist. This will automatically generate the data lists for all splits, and build the codeword matrices needed for training Deep-RTC. Note that our codes can be applied to other datasets once they are organized hierarchically.

Training and evaluation

To train and evaluate Deep-RTC, run

$ export PYTHONPATH=${PWD}/prepro:${PYTHONPATH}
$ ./run.sh {dataset}

where {dataset}=awa2/cifar100/imagenet/inaturalist. Our pretrained models can be downloaded here.

Owner
Gina Wu
https://gina9726.github.io/
Gina Wu
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022