Advanced Signal Processing Notebooks and Tutorials

Overview

Advanced Digital Signal Processing
Notebooks and Tutorials

Prof. Dr. -Ing. Gerald Schuller
Jupyter Notebooks and Videos: Renato Profeta

Applied Media Systems Group
Technische Universität Ilmenau

Content

  • 01 Quantization:
    NBViewerBinderGoogle ColabYoutube

    • Introduction
    • Quantization Error
    • Uniform Quantizers: Mir-Rise and Mid-Tread
    • Python Example: Uniform Quantizers
    • Python Example: Real-time Quantization Example
  • 02 Quantization - Signal to Noise Ratio (SNR):
    NBViewerBinderGoogle ColabYoutube

    • Signal to Noise Ratio (SNR)
    • SNR for Uniformly Distribution Signals
    • SNR for a Sine Wave
      • PDF of Time Series
  • 03 Quantization - Non-Uniform Quantization:
    NBViewerBinderGoogle ColabYoutube

    • Companding
      • µ-LAw and A-Law
      • Python Example: µ-LAw
      • Python Example: Real-Time Mid-Tread, Mid-Rise, µ-Law
  • 04r Quantization - Revision: Histogram, PDFs, Numerical Integration
    NBViewerBinderGoogle ColabYoutube

    • Histograms
    • Probability Density Functions
    • Numerical Integration
      • Riemann Sum
      • Trapezoidal Rule
  • 04 Quantization - Lloyd-Max Quantizer
    NBViewerBinderGoogle ColabYoutube

    • Lloyd-Max Quantizer
    • Lloyd-Max Quantizer Examples
  • 05 Quantization - Vector Quantizer (VQ) and Linde-Buzo-Gray (LBG) Algorithm
    NBViewerBinderGoogle ColabYoutube

    • Vector Quantization
    • Linde-Buzo-Gray Algorithm
    • Python Examples: Vector Quantization in an Encoder and Decoder
      • Iron Maiden - The Number of the Beast Introduction
      • Iron Maiden - Aces High Introduction
  • 06 Sampling - Sampling a Discrete Time Signal
    NBViewerBinderGoogle ColabYoutube

    • Sampling Introduction
    • Sampling a Discrete Time Signal
      • Downsampling
      • Upsampling
    • Python Example: Live Spectrogram: Sampling, LP Filtering
  • 07a The z-Transform - Theory and Properties
    NBViewerBinderGoogle ColabYoutube

    • The z-Transform Definition
    • Properties of the z-Transform
      • Shift Property
      • Linearity
      • Convolution
    • z-Transform Example: Exponential Decaying Sequence
  • 07b Filters - FIR and IIR Filters
    NBViewerBinderGoogle ColabYoutube

    • Filters: Linear Time-Invariant Systems
    • Finite Impulse Response (FIR) Filters
    • Infinite Impulse Response (IIR) Filters
    • Filter Example: Exponential Decaying Signal
      • Computing the Resulting Frequency Response
      • The z-Plane
      • Impulse Response
  • 08 Filters and Noble Identities
    NBViewerBinderGoogle ColabYoutube

    • Filter Design
      • Linear Phase and Signal Delay
      • General Phase and Groud Delay
      • Magnitude
    • Multirate Noble Identities
    • Polyphase Vectors
    • Python Example: Noble Identities and Polyphase Vectors
  • 09 Allpass Filters and Frequency Warping
    NBViewerBinderGoogle ColabYoutube

    • Allpass Filters
      • Allpass Filter as Fractional Delay
      • IIR Fractional Delay Filter Design
      • Simple IIR Allpass Filters
    • Frequency Warping Introduction
    • Frequency Warping and Bark Scale
  • 10 Frequency Warping and Minimum Phase Filters
    NBViewerBinderGoogle ColabYoutube

    • Frequency Warping
    • Minimum Phase Filters
      • Python Example
      • Impulse Response
      • Frequency Response
  • 11 Complex Signals and Filters, Hilbert Transform
    NBViewerBinderGoogle ColabYoutube

    • Complex Signals and Filters
    • Hilbert Transformer
      • Python Example
      • Impulse Response
      • Frequency Response
    • Example for the Measurement of the (Instantaneous) Amplitude
  • 12 Wiener Filters
    NBViewerBinderGoogle ColabYoutube

    • Wiener Filters
      • Python Example for Denoising Speech
      • Scipy Wiener Filter Example: Iron Maiden - The Number of the Beast Speech Intro
  • 13 Matched Filters
    NBViewerBinderGoogle ColabYoutube

    • Matched Filters
      • Python Example: Closed Form Solution
      • Convolutional Neural Network Implementation: PyTorch
  • 14 Prediction
    NBViewerBinderGoogle ColabYoutube

    • Prediction
      • Wiener-Hopf Closed Form Solution
      • Encoder-Decoder System
      • Neural Network Implementation - PyTorch
    • Linear Predictive Coding (LPC)
    • Least Mean Squares (LMS) Algorithm
      • LMS with Quantizer

YouTube Playlist

Youtube

Requirements

Please check the following files at the 'binder' folder:

  • environment.yml
  • postBuild

Note

Examples requiring a microphone will not work on remote environments such as Binder and Google Colab.

Owner
Guitars.AI
PhD Candidate at TU Ilmenau GUITAR INFORMATION RETRIEVAL
Guitars.AI
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022