Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Overview

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

This repository contains the PyTorch code for Evo-ViT.

This work proposes a slow-fast token evolution approach to accelerate vanilla vision transformers of both flat and deep-narrow structures without additional pre-training and fine-tuning procedures. For details please see Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer by Yifan Xu*, Zhijie Zhang*, Mengdan Zhang, Kekai Sheng, Ke Li, Weiming Dong, Liqing Zhang, Changsheng Xu, and Xing Sun. intro

Our code is based on pytorch-image-models, DeiT, and LeViT.

Preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively.

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

All distillation settings are conducted with a teacher model RegNetY-160, which is available at teacher checkpoint.

Install the requirements by running:

pip3 install -r requirements.txt

NOTE that all experiments in the paper are conducted under cuda11.0. If necessary, please install the following packages under the environment with CUDA version 11.0: torch1.7.0-cu110, torchvision-0.8.1-cu110.

Model Zoo

We provide our Evo-ViT models pretrained on ImageNet:

Name Top-1 Acc (%) Throughput (img/s) Url
Evo-ViT-T 72.0 4027 Google Drive
Evo-ViT-S 79.4 1510 Google Drive
Evo-ViT-B 81.3 462 Google Drive
Evo-LeViT-128S 73.0 10135 Google Drive
Evo-LeViT-128 74.4 8323 Google Drive
Evo-LeViT-192 76.8 6148 Google Drive
Evo-LeViT-256 78.8 4277 Google Drive
Evo-LeViT-384 80.7 2412 Google Drive
Evo-ViT-B* 82.0 139 Google Drive
Evo-LeViT-256* 81.1 1285 Google Drive
Evo-LeViT-384* 82.2 712 Google Drive

The input image resolution is 224 × 224 unless specified. * denotes the input image resolution is 384 × 384.

Usage

Evaluation

To evaluate a pre-trained model, run:

python3 main_deit.py --model evo_deit_small_patch16_224 --eval --resume /path/to/checkpoint.pth --batch-size 256 --data-path /path/to/imagenet

Training with input resolution of 224

To train Evo-ViT on ImageNet on a single node with 8 gpus for 300 epochs, run:

Evo-ViT-T

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_deit.py --model evo_deit_tiny_patch16_224 --drop-path 0 --batch-size 256 --data-path /path/to/imagenet --output_dir /path/to/save

Evo-ViT-S

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_deit.py --model evo_deit_small_patch16_224 --batch-size 128 --data-path /path/to/imagenet --output_dir /path/to/save

Sometimes loss Nan happens in the early training epochs of DeiT-B, which is described in this issue. Our solution is to reduce the batch size to 128, load a warmup checkpoint trained for 9 epochs, and train Evo-ViT for the remaining 291 epochs. To train Evo-ViT-B on ImageNet on a single node with 8 gpus for 300 epochs, run:

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_deit.py --model evo_deit_base_patch16_224 --batch-size 128 --data-path /path/to/imagenet --output_dir /path/to/save --resume /path/to/warmup_checkpoint.pth

To train Evo-LeViT-128 on ImageNet on a single node with 8 gpus for 300 epochs, run:

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_levit.py --model EvoLeViT_128 --batch-size 256 --data-path /path/to/imagenet --output_dir /path/to/save

The other models of Evo-LeViT are trained with the same command as mentioned above.

Training with input resolution of 384

To train Evo-ViT-B* on ImageNet on 2 nodes with 8 gpus each for 300 epochs, run:

python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NODE_SIZE  --node_rank=$NODE_RANK --master_port=$MASTER_PORT --master_addr=$MASTER_ADDR main_deit.py --model evo_deit_base_patch16_384 --input-size 384 --batch-size 64 --data-path /path/to/imagenet --output_dir /path/to/save

To train Evo-ViT-S* on ImageNet on a single node with 8 gpus for 300 epochs, run:

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_deit.py --model evo_deit_small_patch16_384 --batch-size 128 --input-size 384 --data-path /path/to/imagenet --output_dir /path/to/save"

To train Evo-LeViT-384* on ImageNet on a single node with 8 gpus for 300 epochs, run:

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_levit.py --model EvoLeViT_384_384 --input-size 384 --batch-size 128 --data-path /path/to/imagenet --output_dir /path/to/save

The other models of Evo-LeViT* are trained with the same command of Evo-LeViT-384*.

Testing inference throughput

To test inference throughput, first modify the model name in line 153 of benchmark.py. Then, run:

python3 benchmark.py

The defauld input resolution is 224. To test inference throughput with input resolution of 384, please add the parameter "--img_size 384"

Visualization of token selection

The visualization code is modified from DynamicViT.

To visualize a batch of ImageNet val images, run:

python3 visualize.py --model evo_deit_small_vis_patch16_224 --resume /path/to/checkpoint.pth --output_dir /path/to/save --data-path /path/to/imagenet --batch-size 64 

To visualize a single image, run:

python3 visualize.py --model evo_deit_small_vis_patch16_224 --resume /path/to/checkpoint.pth --output_dir /path/to/save --img-path ./imgs/a.jpg --save-name evo_test

Add parameter '--layer-wise-prune' if the visualized model is not trained with layer-to-stage training strategy.

The visualization results of Evo-ViT-S are as follows:

result

Citation

If you find our work useful in your research, please consider citing:

@article{xu2021evo,
  title={Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer},
  author={Xu, Yifan and Zhang, Zhijie and Zhang, Mengdan and Sheng, Kekai and Li, Ke and Dong, Weiming and Zhang, Liqing and Xu, Changsheng and Sun, Xing},
  journal={arXiv preprint arXiv:2108.01390},
  year={2021}
}
Owner
YifanXu
But gold will glitter forever.
YifanXu
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023