The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Overview

Self-Supervised Learner

The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning. This repo is for you if you have a lot of unlabeled images and a small fraction (if any) of them labeled.

What is Self-Supervised Learning?
Self-supervised learning is a subfield of machine learning focused on developing representations of images without any labels, which is useful for reverse image searching, categorization and filtering of images, especially so when it would be infeasible to have a human manually inspect each individual image. It also has downstream benefits for classification tasks. For instance, training SSL on 100% of your data and finetuning the encoder on the 5% of data that has been labeled significantly outperforms training a model from scratch on 5% of data or transfer learning based approaches typically.

How To Use SSL Curator

Step 1) Self-Supervied Learning (SSL): Training an encoder without labels

  • The first step is to train a self-supervised encoder. Self-supervised learning does not require labels and lets the model learn from purely unlabeled data to build an image encoder. If you want your model to be color invariant, use grey scale images when possible.
python train.py --technique SIMCLR --model imagenet_resnet18 --DATA_PATH myDataFolder/AllImages  --epochs 100 --log_name ssl 

Step 2) Fine tuning: Training a classifier with labels

  • With the self-supervised training done, the encoder is used to initialize a classifier (finetuning). Because the encoder learned from the entire unlabeled dataset previously, the classifier is able to achieve higher classification accuracy than training from scratch or pure transfer learning.
python train.py --technique CLASSIFIER --model ./models/SIMCLR_ssl.ckpt --DATA_PATH myDataFolder/LabeledImages  --epochs 100 --log_name finetune 

Requirements: GPU with CUDA 10+ enabled, requirements.txt

Most Recent Release Update Model Processing Speed
✔️ 1.0.3 Package Documentation Improved Support for SIMSIAM Multi-GPU Training Supported

TL;DR Quick example

Run sh example.sh to see the tool in action on the UC Merced land use dataset.

Arguments to train.py

You use train.py to train an SSL model and classifier. There are multiple arguments available for you to use:

Mandatory Arguments

--model: The architecture of the encoder that is trained. All encoder options can be found in the models/encoders.py. Currently resnet18, imagenet_resnet18, resnet50, imagenet_resnet50 and minicnn are supported. You would call minicnn with a number to represent output embedding size, for example minicnn32

--technique: What type of SSL or classification to do. Options as of 1.0.4 are SIMCLR, SIMSIAM or CLASSIFIER

--log_name: What to call the output model file (prepended with technique). File will be a .ckpt file, for example SIMCLR_mymodel2.ckpt

--DATA_PATH: The path to your data. If your data does not contain a train and val folder, a copy will automatically be created with train & val splits

Your data must be in the following folder structure as per pytorch ImageFolder specifications:

/Dataset
    /Class 1
        Image1.png
        Image2.png
    /Class 2
        Image3.png
        Image4.png

#When your dataset does not have labels yet you still need to nest it one level deep
/Dataset
    /Unlabelled
        Image1.png
        Image2.png

Optional Arguments

--batch_size: batch size to pass to model for training

--epochs: how many epochs to train

--learning_rate: learning rate for the encoder when training

--cpus: how many cpus you have to use for data reading

--gpus: how many gpus you have to use for training

--seed: random seed for reproducibility

-patience: early stopping if validation loss does not go down for (patience) number of epochs

--image_size: 3 x image_size x image_size input fed into encoder

--hidden_dim: hidden dimensions in projection head or classification layer for finetuning, depending on the technique you're using

--OTHER ARGS: each ssl model and classifier have unique arguments specific to that model. For instance, the classifier lets you select a linear_lr argument to specify a different learning rate for the classification layer and the encoder. These optional params can be found by looking at the add_model_specific_args method in each model contained in the models folder.

Optional: To optimize your environment for deep learning, run this repo on the pytorch nvidia docker:

docker pull nvcr.io/nvidia/pytorch:20.12-py3
mkdir docker_folder
docker run --user=root -p 7000-8000:7000-8000/tcp --volume="/etc/group:/etc/group:ro" --volume="/etc/passwd:/etc/passwd:ro" --volume="/etc/shadow:/etc/shadow:ro" --volume="/etc/sudoers.d:/etc/sudoers.d:ro" --gpus all -it --rm -v /docker_folder:/inside_docker nvcr.io/nvidia/pytorch:20.12-py3
apt update
apt install -y libgl1-mesa-glx
#now clone repo inside container, install requirements as usual, login to wandb if you'd like to

How to access models after training in python environment

Both self-supervised models and finetuned models can be accessed and used normally as pl_bolts.LightningModule models. They function the same as a pytorch nn.Module but have added functionality that works with a pytorch lightning Trainer.

For example:

from models import SIMCLR, CLASSIFIER
simclr_model = SIMCLR.SIMCLR.load_from_checkpoint('/content/models/SIMCLR_ssl.ckpt') #Used like a normal pytorch model
classifier_model = CLASSIFIER.CLASSIFIER.load_from_checkpoint('/content/models/CLASSIFIER_ft.ckpt') #Used like a normal pytorch model

Using Your Own Encoder

If you don't want to use the predefined encoders in models/encoders.py, you can pass your own encoder as a .pt file to the --model argument and specify the --embedding_size arg to tell the tool the output shape from the model.

Releases

  • ✔️ (0.7.0) Dali Transforms Added
  • ✔️ (0.8.0) UC Merced Example Added
  • ✔️ (0.9.0) Model Inference with Dali Supported
  • ✔️ (1.0.0) SIMCLR Model Supported
  • ✔️ (1.0.1) GPU Memory Issues Fixed
  • ✔️ (1.0.1) Multi-GPU Training Enabled
  • ✔️ (1.0.2) Package Speed Improvements
  • ✔️ (1.0.3) Support for SimSiam and Code Restructuring
  • 🎫 (1.0.4) Cluster Visualizations for Embeddings
  • 🎫 (1.1.0) Supporting numpy, TFDS datasets
  • 🎫 (1.2.0) Saliency Maps for Embeddings

Citation

If you find Self-Supervised Learner useful in your research, please consider citing the github code for this tool:

@code{
  title={Self-Supervised Learner,
},
  url={https://github.com/spaceml-org/Self-Supervised-Learner},
  year={2021}
}
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

4.8k Jan 07, 2023
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023