The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Overview

Self-Supervised Learner

The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning. This repo is for you if you have a lot of unlabeled images and a small fraction (if any) of them labeled.

What is Self-Supervised Learning?
Self-supervised learning is a subfield of machine learning focused on developing representations of images without any labels, which is useful for reverse image searching, categorization and filtering of images, especially so when it would be infeasible to have a human manually inspect each individual image. It also has downstream benefits for classification tasks. For instance, training SSL on 100% of your data and finetuning the encoder on the 5% of data that has been labeled significantly outperforms training a model from scratch on 5% of data or transfer learning based approaches typically.

How To Use SSL Curator

Step 1) Self-Supervied Learning (SSL): Training an encoder without labels

  • The first step is to train a self-supervised encoder. Self-supervised learning does not require labels and lets the model learn from purely unlabeled data to build an image encoder. If you want your model to be color invariant, use grey scale images when possible.
python train.py --technique SIMCLR --model imagenet_resnet18 --DATA_PATH myDataFolder/AllImages  --epochs 100 --log_name ssl 

Step 2) Fine tuning: Training a classifier with labels

  • With the self-supervised training done, the encoder is used to initialize a classifier (finetuning). Because the encoder learned from the entire unlabeled dataset previously, the classifier is able to achieve higher classification accuracy than training from scratch or pure transfer learning.
python train.py --technique CLASSIFIER --model ./models/SIMCLR_ssl.ckpt --DATA_PATH myDataFolder/LabeledImages  --epochs 100 --log_name finetune 

Requirements: GPU with CUDA 10+ enabled, requirements.txt

Most Recent Release Update Model Processing Speed
✔️ 1.0.3 Package Documentation Improved Support for SIMSIAM Multi-GPU Training Supported

TL;DR Quick example

Run sh example.sh to see the tool in action on the UC Merced land use dataset.

Arguments to train.py

You use train.py to train an SSL model and classifier. There are multiple arguments available for you to use:

Mandatory Arguments

--model: The architecture of the encoder that is trained. All encoder options can be found in the models/encoders.py. Currently resnet18, imagenet_resnet18, resnet50, imagenet_resnet50 and minicnn are supported. You would call minicnn with a number to represent output embedding size, for example minicnn32

--technique: What type of SSL or classification to do. Options as of 1.0.4 are SIMCLR, SIMSIAM or CLASSIFIER

--log_name: What to call the output model file (prepended with technique). File will be a .ckpt file, for example SIMCLR_mymodel2.ckpt

--DATA_PATH: The path to your data. If your data does not contain a train and val folder, a copy will automatically be created with train & val splits

Your data must be in the following folder structure as per pytorch ImageFolder specifications:

/Dataset
    /Class 1
        Image1.png
        Image2.png
    /Class 2
        Image3.png
        Image4.png

#When your dataset does not have labels yet you still need to nest it one level deep
/Dataset
    /Unlabelled
        Image1.png
        Image2.png

Optional Arguments

--batch_size: batch size to pass to model for training

--epochs: how many epochs to train

--learning_rate: learning rate for the encoder when training

--cpus: how many cpus you have to use for data reading

--gpus: how many gpus you have to use for training

--seed: random seed for reproducibility

-patience: early stopping if validation loss does not go down for (patience) number of epochs

--image_size: 3 x image_size x image_size input fed into encoder

--hidden_dim: hidden dimensions in projection head or classification layer for finetuning, depending on the technique you're using

--OTHER ARGS: each ssl model and classifier have unique arguments specific to that model. For instance, the classifier lets you select a linear_lr argument to specify a different learning rate for the classification layer and the encoder. These optional params can be found by looking at the add_model_specific_args method in each model contained in the models folder.

Optional: To optimize your environment for deep learning, run this repo on the pytorch nvidia docker:

docker pull nvcr.io/nvidia/pytorch:20.12-py3
mkdir docker_folder
docker run --user=root -p 7000-8000:7000-8000/tcp --volume="/etc/group:/etc/group:ro" --volume="/etc/passwd:/etc/passwd:ro" --volume="/etc/shadow:/etc/shadow:ro" --volume="/etc/sudoers.d:/etc/sudoers.d:ro" --gpus all -it --rm -v /docker_folder:/inside_docker nvcr.io/nvidia/pytorch:20.12-py3
apt update
apt install -y libgl1-mesa-glx
#now clone repo inside container, install requirements as usual, login to wandb if you'd like to

How to access models after training in python environment

Both self-supervised models and finetuned models can be accessed and used normally as pl_bolts.LightningModule models. They function the same as a pytorch nn.Module but have added functionality that works with a pytorch lightning Trainer.

For example:

from models import SIMCLR, CLASSIFIER
simclr_model = SIMCLR.SIMCLR.load_from_checkpoint('/content/models/SIMCLR_ssl.ckpt') #Used like a normal pytorch model
classifier_model = CLASSIFIER.CLASSIFIER.load_from_checkpoint('/content/models/CLASSIFIER_ft.ckpt') #Used like a normal pytorch model

Using Your Own Encoder

If you don't want to use the predefined encoders in models/encoders.py, you can pass your own encoder as a .pt file to the --model argument and specify the --embedding_size arg to tell the tool the output shape from the model.

Releases

  • ✔️ (0.7.0) Dali Transforms Added
  • ✔️ (0.8.0) UC Merced Example Added
  • ✔️ (0.9.0) Model Inference with Dali Supported
  • ✔️ (1.0.0) SIMCLR Model Supported
  • ✔️ (1.0.1) GPU Memory Issues Fixed
  • ✔️ (1.0.1) Multi-GPU Training Enabled
  • ✔️ (1.0.2) Package Speed Improvements
  • ✔️ (1.0.3) Support for SimSiam and Code Restructuring
  • 🎫 (1.0.4) Cluster Visualizations for Embeddings
  • 🎫 (1.1.0) Supporting numpy, TFDS datasets
  • 🎫 (1.2.0) Saliency Maps for Embeddings

Citation

If you find Self-Supervised Learner useful in your research, please consider citing the github code for this tool:

@code{
  title={Self-Supervised Learner,
},
  url={https://github.com/spaceml-org/Self-Supervised-Learner},
  year={2021}
}
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022