Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

Overview

offpcc_logo

arXiv technical report soon available.

we are updating the readme to be as comprehensive as possible

Please ask any questions in Issues, thanks.

Introduction

This PyTorch repo implements off-policy RL algorithms for continuous control, including:

  • Standard algorithms: DDPG, TD3, SAC
  • Image-based algorithm: ConvolutionalSAC
  • Recurrent algorithms: RecurrentDPG, RecurrentTD3, RecurrentSAC, RecurrentSACSharing (see report)

where recurrent algorithms are generally not available in other repos.

Structure of codebase

Here, we talk about the organization of this code. In particular, we will talk about

  • Folder: where are certain files located?
  • Classes: how are classes designed to interact with each other?
  • Training/evaluation loop: how environment interaction, learning and evaluation alternate?

A basic understanding of these will make other details easy to understand from code itself.

Folders

  • file
    • containing plots reproducing stable-baselines3; you don’t need to touch this
  • offpcc (the good stuff; you will be using this)
    • algorithms (where DDPG, TD3 and SAC are implemented)
    • algorithms_recurrent (where RDPG, RTD3 and RSAC are implemented)
    • basics (abstract classes, stuff shared by algorithms or algorithms_recurrent, code for training)
    • basics_sb3 (you don’t need to touch this)
    • configs (gin configs)
    • domains (all custom domains are stored within and registered properly)
  • pics_for_readme
    • random pics; you don’t need to touch this
  • temp
    • potentially outdated stuff; you don’t need to touch this

Relationships between classes

There are three core classes in this repo:

  • Any environment written using OpenAI’s API would have:
    • reset method outputs the current state
    • step method takes in an action, outputs (reward, next state, done, info)
  • OffPolicyRLAlgorithm and RecurrentOffPolicyRLAlgorithm are the base class for all algorithms listed in introduction. You should think about them as neural network (e.g., actors, critics, CNNs, RNNs) wrappers that are augmented with methods to help these networks interact with other stuff:
    • act method takes in state from env, outputs action back to env
    • update_networks method takes in batch from buffer
  • The replay buffers ReplayBuffer and RecurrentReplayBuffer are built to interact with the environment and the algorithm classes
    • push method takes in a transition from env
    • sample method outputs a batch for algorithm’s update_networks method

Their relationships are best illustrated by a diagram:

offpcc_steps

Structure of training/evaluation loop

In this repo, we follow the training/evaluation loop style in spinning-up (this is essentially the script: basics/run_fns and the function train). It follows this basic structure, with details added for tracking stats and etc:

state = env.reset()
for t range(total_steps):  # e.g., 1 million
    # environment interaction
    if t >= update_after:
        action = algorithm.act(state)
    else:
        action = env.action_space.sample()
    next_state, reward, done, info = env.step(action)
   	# learning
    if t >= update_after and (t + 1) % update_every == 0:
        for j in range(update_every):
            batch = buffer.sample()
            algorithm.update_networks(batch)
    # evaluation
    if (t + 1) % num_steps_per_epoch == 0:
        ep_len, ep_ret = test_for_one_episode(test_env, algorithm)

Dependencies

Dependencies are available in requirements.txt; although there might be one or two missing dependencies that you need to install yourself.

Train an agent

Setup (wandb & GPU)

Add this to your bashrc or bash_profile and source it.

You should replace “account_name” with whatever wandb account that you want to use.

export OFFPCC_WANDB_ENTITY="account_name"

From the command line:

cd offpcc
CUDA_VISIBLE_DEVICES=3 OFFPCC_WANDB_PROJECT=project123 python launch.py --env <env-name> --algo <algo-name> --config <config-path> --run_id <id>

For DDPG, TD3, SAC

On pendulum-v0:

python launch.py --env pendulum-v0 --algo sac --config configs/test/template_short.gin --run_id 1

Commands and plots for benchmarking on Pybullet domains are in a Issue called “Performance check against SB3”.

For RecurrentDDPG, RecurrentTD3, RecurrentSAC

On pendulum-p-v0:

python launch.py --env pendulum-p-v0 --algo rsac --config configs/test/template_recurrent_100k.gin --run_id 1

Reproducing paper results

To reproduce paper results, simply run the commands in the previous section with the appropriate env name (listed below) and config files (their file names are highly readable). Mapping between env names used in code and env names used in paper:

  • pendulum-v0: pendulum
  • pendulum-p-v0: pendulum-p
  • pendulum-va-v0: pendulum-v
  • dmc-cartpole-balance-v0: cartpole-balance
  • dmc-cartpole-balance-p-v0: cartpole-balance-p
  • dmc-cartpole-balance-va-v0: cartpole-balance-v
  • dmc-cartpole-swingup-v0: cartpole-swingup
  • dmc-cartpole-swingup-p-v0: cartpole-swingup-p
  • dmc-cartpole-swingup-va-v0: cartpole-swingup-v
  • reacher-pomdp-v0: reacher-pomdp
  • water-maze-simple-pomdp-v0: watermaze
  • bumps-normal-test-v0: push-r-bump

Render learned policy

Create a folder in the same directory as offpcc, called results. In there, create a folder with the name of the environment, e.g., pendulum-p-v0. Within that env folder, create a folder with the name of the algorithm, e.g., rsac. You can get an idea of the algorithms available from the algo_name2class diectionary defined in offpcc/launch.py. Within that algorithm folder, create a folder with the run_id, e.g., 1. Simply put the saved actor (also actor summarizer for recurrent algorithms) into that inner most foler - they can be downloaded from the wandb website after your run finishes. Finally, go back into offpcc, and call

python launch.py --env pendulum-v0 --algo sac --config configs/test/template_short.gin --run_id 1 --render

For bumps-normal-test-v0, you need to modify the test_for_one_episode function within offpcc/basics/run_fns.py because, for Pybullet environments, the env.step must only appear once before the env.reset() call.

Owner
Zhihan
Zhihan
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Bozitao Zhong 77 Dec 22, 2022