Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

Overview

offpcc_logo

arXiv technical report soon available.

we are updating the readme to be as comprehensive as possible

Please ask any questions in Issues, thanks.

Introduction

This PyTorch repo implements off-policy RL algorithms for continuous control, including:

  • Standard algorithms: DDPG, TD3, SAC
  • Image-based algorithm: ConvolutionalSAC
  • Recurrent algorithms: RecurrentDPG, RecurrentTD3, RecurrentSAC, RecurrentSACSharing (see report)

where recurrent algorithms are generally not available in other repos.

Structure of codebase

Here, we talk about the organization of this code. In particular, we will talk about

  • Folder: where are certain files located?
  • Classes: how are classes designed to interact with each other?
  • Training/evaluation loop: how environment interaction, learning and evaluation alternate?

A basic understanding of these will make other details easy to understand from code itself.

Folders

  • file
    • containing plots reproducing stable-baselines3; you don’t need to touch this
  • offpcc (the good stuff; you will be using this)
    • algorithms (where DDPG, TD3 and SAC are implemented)
    • algorithms_recurrent (where RDPG, RTD3 and RSAC are implemented)
    • basics (abstract classes, stuff shared by algorithms or algorithms_recurrent, code for training)
    • basics_sb3 (you don’t need to touch this)
    • configs (gin configs)
    • domains (all custom domains are stored within and registered properly)
  • pics_for_readme
    • random pics; you don’t need to touch this
  • temp
    • potentially outdated stuff; you don’t need to touch this

Relationships between classes

There are three core classes in this repo:

  • Any environment written using OpenAI’s API would have:
    • reset method outputs the current state
    • step method takes in an action, outputs (reward, next state, done, info)
  • OffPolicyRLAlgorithm and RecurrentOffPolicyRLAlgorithm are the base class for all algorithms listed in introduction. You should think about them as neural network (e.g., actors, critics, CNNs, RNNs) wrappers that are augmented with methods to help these networks interact with other stuff:
    • act method takes in state from env, outputs action back to env
    • update_networks method takes in batch from buffer
  • The replay buffers ReplayBuffer and RecurrentReplayBuffer are built to interact with the environment and the algorithm classes
    • push method takes in a transition from env
    • sample method outputs a batch for algorithm’s update_networks method

Their relationships are best illustrated by a diagram:

offpcc_steps

Structure of training/evaluation loop

In this repo, we follow the training/evaluation loop style in spinning-up (this is essentially the script: basics/run_fns and the function train). It follows this basic structure, with details added for tracking stats and etc:

state = env.reset()
for t range(total_steps):  # e.g., 1 million
    # environment interaction
    if t >= update_after:
        action = algorithm.act(state)
    else:
        action = env.action_space.sample()
    next_state, reward, done, info = env.step(action)
   	# learning
    if t >= update_after and (t + 1) % update_every == 0:
        for j in range(update_every):
            batch = buffer.sample()
            algorithm.update_networks(batch)
    # evaluation
    if (t + 1) % num_steps_per_epoch == 0:
        ep_len, ep_ret = test_for_one_episode(test_env, algorithm)

Dependencies

Dependencies are available in requirements.txt; although there might be one or two missing dependencies that you need to install yourself.

Train an agent

Setup (wandb & GPU)

Add this to your bashrc or bash_profile and source it.

You should replace “account_name” with whatever wandb account that you want to use.

export OFFPCC_WANDB_ENTITY="account_name"

From the command line:

cd offpcc
CUDA_VISIBLE_DEVICES=3 OFFPCC_WANDB_PROJECT=project123 python launch.py --env <env-name> --algo <algo-name> --config <config-path> --run_id <id>

For DDPG, TD3, SAC

On pendulum-v0:

python launch.py --env pendulum-v0 --algo sac --config configs/test/template_short.gin --run_id 1

Commands and plots for benchmarking on Pybullet domains are in a Issue called “Performance check against SB3”.

For RecurrentDDPG, RecurrentTD3, RecurrentSAC

On pendulum-p-v0:

python launch.py --env pendulum-p-v0 --algo rsac --config configs/test/template_recurrent_100k.gin --run_id 1

Reproducing paper results

To reproduce paper results, simply run the commands in the previous section with the appropriate env name (listed below) and config files (their file names are highly readable). Mapping between env names used in code and env names used in paper:

  • pendulum-v0: pendulum
  • pendulum-p-v0: pendulum-p
  • pendulum-va-v0: pendulum-v
  • dmc-cartpole-balance-v0: cartpole-balance
  • dmc-cartpole-balance-p-v0: cartpole-balance-p
  • dmc-cartpole-balance-va-v0: cartpole-balance-v
  • dmc-cartpole-swingup-v0: cartpole-swingup
  • dmc-cartpole-swingup-p-v0: cartpole-swingup-p
  • dmc-cartpole-swingup-va-v0: cartpole-swingup-v
  • reacher-pomdp-v0: reacher-pomdp
  • water-maze-simple-pomdp-v0: watermaze
  • bumps-normal-test-v0: push-r-bump

Render learned policy

Create a folder in the same directory as offpcc, called results. In there, create a folder with the name of the environment, e.g., pendulum-p-v0. Within that env folder, create a folder with the name of the algorithm, e.g., rsac. You can get an idea of the algorithms available from the algo_name2class diectionary defined in offpcc/launch.py. Within that algorithm folder, create a folder with the run_id, e.g., 1. Simply put the saved actor (also actor summarizer for recurrent algorithms) into that inner most foler - they can be downloaded from the wandb website after your run finishes. Finally, go back into offpcc, and call

python launch.py --env pendulum-v0 --algo sac --config configs/test/template_short.gin --run_id 1 --render

For bumps-normal-test-v0, you need to modify the test_for_one_episode function within offpcc/basics/run_fns.py because, for Pybullet environments, the env.step must only appear once before the env.reset() call.

Owner
Zhihan
Zhihan
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022