moving object detection for satellite videos.

Overview

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos

outline

Algorithm Introduction

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos, Chao Xiao, Qian Yin, and Xingyi Ying.

We propose a two-stream network named DSFNet to combine the static context information and the dynamic motion cues to detect small moving object in satellite videos. Experiments on videos collected from Jilin-1 satellite and the results have demonstrated the effectiveness and robustness of the proposed DSFNet. For more detailed information, please refer to the paper.

In this code, we also apply SORT to get the tracking results of DSFNet.

Citation

If you find the code useful, please consider citing our paper using the following BibTeX entry.

@article{xiao2021dsfnet,
  title={DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos},
  author={Xiao, Chao and Yin, Qian and Ying, Xinyi and Li, Ruojing and Wu, Shuanglin and Li, Miao and Liu, Li and An, Wei and Chen, Zhijie},
  journal={IEEE Geoscience and Remote Sensing Letters},
  volume={19},
  pages={1--5},
  year={2021},
  publisher={IEEE}
}

Prerequisite

  • Tested on Ubuntu 20.04, with Python 3.7, PyTorch 1.7, Torchvision 0.8.1, CUDA 10.2, and 2x NVIDIA 2080Ti.
  • You can follow CenterNet to build the conda environment but remember to replace the DCNv2 used here with the used DCNv2 by CenterNet (Because we used the latested version of DCNv2 under PyTorch 1.7).
  • You can also follow CenterNet to build the conda environment with Python 3.7, PyTorch 1.7, Torchvision 0.8.1 and run this code.
  • The dataset used here is available in [BaiduYun](Sharing code: 4afk). You can download the dataset and put it to the data folder.

Usage

On Ubuntu:

1. Train.

python train.py --model_name DSFNet --gpus 0,1 --lr 1.25e-4 --lr_step 30,45 --num_epochs 55 --batch_size 4 --val_intervals 5  --test_large_size True --datasetname rsdata --data_dir  ./data/RsCarData/

2. Test.

python test.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --datasetname rsdata --data_dir  ./data/RsCarData/ 

(Optional 1) Test and visulization.

python test.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --show_results True --datasetname rsdata --data_dir  ./data/RsCarData/ 

(Optional 2) Test and visualize the tracking results of SORT.

python testTrackingSort.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --save_track_results True --datasetname rsdata --data_dir  ./data/RsCarData/ 

Results and Trained Models

Qualitative Results

outline

Quantative Results

Quantitative results of different models evaluated by [email protected]. The model weights are available at [BaiduYun](Sharing code: bidt). You can down load the model weights and put it to the checkpoints folder.

Models [email protected]
DSFNet with Static 54.3
DSFNet with Dynamic 60.5
DSFNet 70.5

*This code is highly borrowed from CenterNet. Thanks to Xingyi zhou.

*The overall repository style is highly borrowed from DNANet. Thanks to Boyang Li.

*The dataset is part of VISO. Thanks to Qian Yin.

Referrences

  1. X. Zhou, D. Wang, and P. Krahenbuhl, "Objects as points," arXiv preprint arXiv:1904.07850, 2019.
  2. K. Simonyan and A. Zisserman, "Two-stream convolutional networks for action recognition in videos," Advances in NeurIPS, vol. 1, 2014.
  3. Bewley, Alex, et al. "Simple online and realtime tracking." 2016 IEEE international conference on image processing (ICIP). IEEE, 2016.
  4. Yin, Qian, et al., "Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark," IEEE Transactions on Geoscience and Remote Sensing (2021).

To Do

Update the model weights trained on VISO.

Owner
xiaochao
xiaochao
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
pip install python-office

🍬 python for office 👉 http://www.python4office.cn/ 👈 🌎 English Documentation 📚 简介 Python-office 是一个 Python 自动化办公第三方库,能解决大部分自动化办公的问题。而且每个功能只需一行代码,

程序员晚枫 272 Dec 29, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023