moving object detection for satellite videos.

Overview

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos

outline

Algorithm Introduction

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos, Chao Xiao, Qian Yin, and Xingyi Ying.

We propose a two-stream network named DSFNet to combine the static context information and the dynamic motion cues to detect small moving object in satellite videos. Experiments on videos collected from Jilin-1 satellite and the results have demonstrated the effectiveness and robustness of the proposed DSFNet. For more detailed information, please refer to the paper.

In this code, we also apply SORT to get the tracking results of DSFNet.

Citation

If you find the code useful, please consider citing our paper using the following BibTeX entry.

@article{xiao2021dsfnet,
  title={DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos},
  author={Xiao, Chao and Yin, Qian and Ying, Xinyi and Li, Ruojing and Wu, Shuanglin and Li, Miao and Liu, Li and An, Wei and Chen, Zhijie},
  journal={IEEE Geoscience and Remote Sensing Letters},
  volume={19},
  pages={1--5},
  year={2021},
  publisher={IEEE}
}

Prerequisite

  • Tested on Ubuntu 20.04, with Python 3.7, PyTorch 1.7, Torchvision 0.8.1, CUDA 10.2, and 2x NVIDIA 2080Ti.
  • You can follow CenterNet to build the conda environment but remember to replace the DCNv2 used here with the used DCNv2 by CenterNet (Because we used the latested version of DCNv2 under PyTorch 1.7).
  • You can also follow CenterNet to build the conda environment with Python 3.7, PyTorch 1.7, Torchvision 0.8.1 and run this code.
  • The dataset used here is available in [BaiduYun](Sharing code: 4afk). You can download the dataset and put it to the data folder.

Usage

On Ubuntu:

1. Train.

python train.py --model_name DSFNet --gpus 0,1 --lr 1.25e-4 --lr_step 30,45 --num_epochs 55 --batch_size 4 --val_intervals 5  --test_large_size True --datasetname rsdata --data_dir  ./data/RsCarData/

2. Test.

python test.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --datasetname rsdata --data_dir  ./data/RsCarData/ 

(Optional 1) Test and visulization.

python test.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --show_results True --datasetname rsdata --data_dir  ./data/RsCarData/ 

(Optional 2) Test and visualize the tracking results of SORT.

python testTrackingSort.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --save_track_results True --datasetname rsdata --data_dir  ./data/RsCarData/ 

Results and Trained Models

Qualitative Results

outline

Quantative Results

Quantitative results of different models evaluated by [email protected]. The model weights are available at [BaiduYun](Sharing code: bidt). You can down load the model weights and put it to the checkpoints folder.

Models [email protected]
DSFNet with Static 54.3
DSFNet with Dynamic 60.5
DSFNet 70.5

*This code is highly borrowed from CenterNet. Thanks to Xingyi zhou.

*The overall repository style is highly borrowed from DNANet. Thanks to Boyang Li.

*The dataset is part of VISO. Thanks to Qian Yin.

Referrences

  1. X. Zhou, D. Wang, and P. Krahenbuhl, "Objects as points," arXiv preprint arXiv:1904.07850, 2019.
  2. K. Simonyan and A. Zisserman, "Two-stream convolutional networks for action recognition in videos," Advances in NeurIPS, vol. 1, 2014.
  3. Bewley, Alex, et al. "Simple online and realtime tracking." 2016 IEEE international conference on image processing (ICIP). IEEE, 2016.
  4. Yin, Qian, et al., "Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark," IEEE Transactions on Geoscience and Remote Sensing (2021).

To Do

Update the model weights trained on VISO.

Owner
xiaochao
xiaochao
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

kongdebug 14 Oct 14, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022