moving object detection for satellite videos.

Overview

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos

outline

Algorithm Introduction

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos, Chao Xiao, Qian Yin, and Xingyi Ying.

We propose a two-stream network named DSFNet to combine the static context information and the dynamic motion cues to detect small moving object in satellite videos. Experiments on videos collected from Jilin-1 satellite and the results have demonstrated the effectiveness and robustness of the proposed DSFNet. For more detailed information, please refer to the paper.

In this code, we also apply SORT to get the tracking results of DSFNet.

Citation

If you find the code useful, please consider citing our paper using the following BibTeX entry.

@article{xiao2021dsfnet,
  title={DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos},
  author={Xiao, Chao and Yin, Qian and Ying, Xinyi and Li, Ruojing and Wu, Shuanglin and Li, Miao and Liu, Li and An, Wei and Chen, Zhijie},
  journal={IEEE Geoscience and Remote Sensing Letters},
  volume={19},
  pages={1--5},
  year={2021},
  publisher={IEEE}
}

Prerequisite

  • Tested on Ubuntu 20.04, with Python 3.7, PyTorch 1.7, Torchvision 0.8.1, CUDA 10.2, and 2x NVIDIA 2080Ti.
  • You can follow CenterNet to build the conda environment but remember to replace the DCNv2 used here with the used DCNv2 by CenterNet (Because we used the latested version of DCNv2 under PyTorch 1.7).
  • You can also follow CenterNet to build the conda environment with Python 3.7, PyTorch 1.7, Torchvision 0.8.1 and run this code.
  • The dataset used here is available in [BaiduYun](Sharing code: 4afk). You can download the dataset and put it to the data folder.

Usage

On Ubuntu:

1. Train.

python train.py --model_name DSFNet --gpus 0,1 --lr 1.25e-4 --lr_step 30,45 --num_epochs 55 --batch_size 4 --val_intervals 5  --test_large_size True --datasetname rsdata --data_dir  ./data/RsCarData/

2. Test.

python test.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --datasetname rsdata --data_dir  ./data/RsCarData/ 

(Optional 1) Test and visulization.

python test.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --show_results True --datasetname rsdata --data_dir  ./data/RsCarData/ 

(Optional 2) Test and visualize the tracking results of SORT.

python testTrackingSort.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --save_track_results True --datasetname rsdata --data_dir  ./data/RsCarData/ 

Results and Trained Models

Qualitative Results

outline

Quantative Results

Quantitative results of different models evaluated by [email protected]. The model weights are available at [BaiduYun](Sharing code: bidt). You can down load the model weights and put it to the checkpoints folder.

Models [email protected]
DSFNet with Static 54.3
DSFNet with Dynamic 60.5
DSFNet 70.5

*This code is highly borrowed from CenterNet. Thanks to Xingyi zhou.

*The overall repository style is highly borrowed from DNANet. Thanks to Boyang Li.

*The dataset is part of VISO. Thanks to Qian Yin.

Referrences

  1. X. Zhou, D. Wang, and P. Krahenbuhl, "Objects as points," arXiv preprint arXiv:1904.07850, 2019.
  2. K. Simonyan and A. Zisserman, "Two-stream convolutional networks for action recognition in videos," Advances in NeurIPS, vol. 1, 2014.
  3. Bewley, Alex, et al. "Simple online and realtime tracking." 2016 IEEE international conference on image processing (ICIP). IEEE, 2016.
  4. Yin, Qian, et al., "Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark," IEEE Transactions on Geoscience and Remote Sensing (2021).

To Do

Update the model weights trained on VISO.

Owner
xiaochao
xiaochao
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
yufan 81 Dec 08, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
This repository provides the code for MedViLL(Medical Vision Language Learner).

MedViLL This repository provides the code for MedViLL(Medical Vision Language Learner). Our proposed architecture MedViLL is a single BERT-based model

SuperSuperMoon 39 Jan 05, 2023
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022