Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Overview

Graph Convolutional Networks for Hyperspectral Image Classification

Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot

The code in this toolbox implements the "Graph Convolutional Networks for Hyperspectral Image Classification". More specifically, it is detailed as follow.

alt text

Citation

Please kindly cite the papers if this code is useful and helpful for your research.

D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE Trans. Geosci. Remote Sens., 2021, 59(7): 5966-5978.

 @article{hong2021graph,
  title     = {Graph Convolutional Networks for Hyperspectral Image Classification},
  author    = {D. Hong and L. Gao and J. Yao and B. Zhang and A. Plaza and J. Chanussot},
  journal   = {IEEE Trans. Geosci. Remote Sens.}, 
  volume    = {59},
  number    = {7},
  pages     = {5966--5978},
  year      = {2021},
  publisher = {IEEE}
 }

System-specific notes

The data were generated by Matlab R2016a or higher versions, and the codes of various networks were tested in Tensorflow 1.14 version (a little bit different from 2.0 version in some functions) in Python 3.7 on Windows 10 machines.

How to use it?

Here an example experiment is given by using Indian Pine data. Directly run .py functions with different networks to reproduce the results on the Indian Pine data, which exists in the aforementioned paper. Please note that we fixed the randomness of the parameter initialization to reproduce the unchanged results.

This toolbox consists of eight hyperspectral classification networks as follows

1DCNN: one-dimensional convolutional neural network
2DCNN: two-dimensional convolutional neural network
3DCNN:three-dimensional convolutional neural network, which can be found from the paper (Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks, Chen et al., TGRS 2016)
GCN: graph convolutional network
miniGCN: mini-batch GCN
FuNet-A: fusion networks with additive fusion
FuNet-M: fusion networks with element-wise multiplicative fusion
FuNet-C: fusion networks with concatenation fusion

If you want to run the code in your own data, you have to

first of all, use the matlab functions in the folder of DataGenerate_Funciton to prepare the network input data;
next, change the save route or directly copy the generated data into the folder of HSI_CNN or HSI_GCN;
finally, run the .py networks.

Moreover, we provide the fucntion of draw_ClassificaitonMap.m to draw the classification maps with the given colormap function, i.e., giveColorCM_HH.m.

If you encounter the bugs while using this code, please do not hesitate to contact us.

The variable in X_test.mat was converted to single-precision for efficient use of memory, which may cause slight admissible perturbation on actual results. Due to its large size, you may need to manually download X_test.mat to your local in the folder under path IEEE_TGRS_GCN/HSI_CNN/ by the given the links of google drive or baiduyun as follows

Google drive: https://drive.google.com/file/d/1JonHPynVZWCQ9EvZA-oXiFEPU-giIaYt/view?usp=sharing

Baiduyun: https://pan.baidu.com/s/1XRcKsckcYTqnD_zjOvWHoQ (access code: mrdf)

We also provide the fixed training and testing images for Pavia University.

Licensing

Copyright (C) 2020 Danfeng Hong

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.

Contact Information:

Danfeng Hong: [email protected]
Danfeng Hong is with the Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France.

If emergency, you can also add my QQ: 345088114.

Owner
Danfeng Hong
Research Scientist, DLR, Germany / Adjunct Scientist, GiPSA-Lab, French / Machine and Deep Learning in Earth Vision
Danfeng Hong
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Project for tracking occupancy in Tel-Aviv parking lots.

Ahuzat Dibuk - Tracking occupancy in Tel-Aviv parking lots main.py This module was set-up to be executed on Google Cloud Platform. I run it every 15 m

Geva Kipper 35 Nov 22, 2022
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023