Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Overview

Graph Convolutional Networks for Hyperspectral Image Classification

Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot

The code in this toolbox implements the "Graph Convolutional Networks for Hyperspectral Image Classification". More specifically, it is detailed as follow.

alt text

Citation

Please kindly cite the papers if this code is useful and helpful for your research.

D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE Trans. Geosci. Remote Sens., 2021, 59(7): 5966-5978.

 @article{hong2021graph,
  title     = {Graph Convolutional Networks for Hyperspectral Image Classification},
  author    = {D. Hong and L. Gao and J. Yao and B. Zhang and A. Plaza and J. Chanussot},
  journal   = {IEEE Trans. Geosci. Remote Sens.}, 
  volume    = {59},
  number    = {7},
  pages     = {5966--5978},
  year      = {2021},
  publisher = {IEEE}
 }

System-specific notes

The data were generated by Matlab R2016a or higher versions, and the codes of various networks were tested in Tensorflow 1.14 version (a little bit different from 2.0 version in some functions) in Python 3.7 on Windows 10 machines.

How to use it?

Here an example experiment is given by using Indian Pine data. Directly run .py functions with different networks to reproduce the results on the Indian Pine data, which exists in the aforementioned paper. Please note that we fixed the randomness of the parameter initialization to reproduce the unchanged results.

This toolbox consists of eight hyperspectral classification networks as follows

1DCNN: one-dimensional convolutional neural network
2DCNN: two-dimensional convolutional neural network
3DCNN:three-dimensional convolutional neural network, which can be found from the paper (Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks, Chen et al., TGRS 2016)
GCN: graph convolutional network
miniGCN: mini-batch GCN
FuNet-A: fusion networks with additive fusion
FuNet-M: fusion networks with element-wise multiplicative fusion
FuNet-C: fusion networks with concatenation fusion

If you want to run the code in your own data, you have to

first of all, use the matlab functions in the folder of DataGenerate_Funciton to prepare the network input data;
next, change the save route or directly copy the generated data into the folder of HSI_CNN or HSI_GCN;
finally, run the .py networks.

Moreover, we provide the fucntion of draw_ClassificaitonMap.m to draw the classification maps with the given colormap function, i.e., giveColorCM_HH.m.

If you encounter the bugs while using this code, please do not hesitate to contact us.

The variable in X_test.mat was converted to single-precision for efficient use of memory, which may cause slight admissible perturbation on actual results. Due to its large size, you may need to manually download X_test.mat to your local in the folder under path IEEE_TGRS_GCN/HSI_CNN/ by the given the links of google drive or baiduyun as follows

Google drive: https://drive.google.com/file/d/1JonHPynVZWCQ9EvZA-oXiFEPU-giIaYt/view?usp=sharing

Baiduyun: https://pan.baidu.com/s/1XRcKsckcYTqnD_zjOvWHoQ (access code: mrdf)

We also provide the fixed training and testing images for Pavia University.

Licensing

Copyright (C) 2020 Danfeng Hong

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.

Contact Information:

Danfeng Hong: [email protected]
Danfeng Hong is with the Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France.

If emergency, you can also add my QQ: 345088114.

Owner
Danfeng Hong
Research Scientist, DLR, Germany / Adjunct Scientist, GiPSA-Lab, French / Machine and Deep Learning in Earth Vision
Danfeng Hong
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023