Official Pytorch implementation for video neural representation (NeRV)

Related tags

Deep LearningNeRV
Overview

NeRV: Neural Representations for Videos (NeurIPS 2021)

Project Page | Paper | UVG Data

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava
This is the official implementation of the paper "NeRV: Neural Representations for Videos ".

Get started

We run with Python 3.8, you can set up a conda environment with all dependencies like so:

pip install -r requirements.txt 

High-Level structure

The code is organized as follows:

  • train_nerv.py includes a generic traiing routine.
  • model_nerv.py contains the dataloader and neural network architecure
  • data/ directory video/imae dataset, we provide big buck bunny here
  • checkpoint/ directory contains some pre-trained model on big buck bunny dataset
  • log files (tensorboard, txt, state_dict etc.) will be saved in output directory (specified by --outf)

Reproducing experiments

Training experiments

The NeRV-S experiment on 'big buck bunny' can be reproduced with

python train_nerv.py -e 300 --cycles 1  --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none --act swish 

Evaluation experiments

To evaluate pre-trained model, just add --eval_Only and specify model path with --weight, you can specify model quantization with --quant_bit [bit_lenght], yuo can test decoding speed with --eval_fps, below we preovide sample commends for NeRV-S on bunny dataset

python train_nerv.py -e 300 --cycles 1  --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none  --act swish \
    --weight checkpoints/nerv_S.pth --eval_only 

Dump predictions with pre-trained model

To evaluate pre-trained model, just add --eval_Only and specify model path with --weight

python train_nerv.py -e 300 --cycles 1  --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none  --act swish \
   --weight checkpoints/nerv_S.pth --eval_only  --dump_images

Citation

If you find our work useful in your research, please cite:

@inproceedings{hao2021nerv,
    author = {Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava },
    title = {NeRV: Neural Representations for Videos s},
    booktitle = {NeurIPS},
    year={2021}
}

Contact

If you have any questions, please feel free to email the authors.

Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022