Official Pytorch implementation for video neural representation (NeRV)

Related tags

Deep LearningNeRV
Overview

NeRV: Neural Representations for Videos (NeurIPS 2021)

Project Page | Paper | UVG Data

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava
This is the official implementation of the paper "NeRV: Neural Representations for Videos ".

Get started

We run with Python 3.8, you can set up a conda environment with all dependencies like so:

pip install -r requirements.txt 

High-Level structure

The code is organized as follows:

  • train_nerv.py includes a generic traiing routine.
  • model_nerv.py contains the dataloader and neural network architecure
  • data/ directory video/imae dataset, we provide big buck bunny here
  • checkpoint/ directory contains some pre-trained model on big buck bunny dataset
  • log files (tensorboard, txt, state_dict etc.) will be saved in output directory (specified by --outf)

Reproducing experiments

Training experiments

The NeRV-S experiment on 'big buck bunny' can be reproduced with

python train_nerv.py -e 300 --cycles 1  --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none --act swish 

Evaluation experiments

To evaluate pre-trained model, just add --eval_Only and specify model path with --weight, you can specify model quantization with --quant_bit [bit_lenght], yuo can test decoding speed with --eval_fps, below we preovide sample commends for NeRV-S on bunny dataset

python train_nerv.py -e 300 --cycles 1  --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none  --act swish \
    --weight checkpoints/nerv_S.pth --eval_only 

Dump predictions with pre-trained model

To evaluate pre-trained model, just add --eval_Only and specify model path with --weight

python train_nerv.py -e 300 --cycles 1  --lower-width 96 --num-blocks 1 --dataset bunny --frame_gap 1 \
    --outf bunny_ab --embed 1.25_40 --stem_dim_num 512_1  --reduction 2  --fc_hw_dim 9_16_26 --expansion 1  \
    --single_res --loss Fusion6   --warmup 0.2 --lr_type cosine  --strides 5 2 2 2 2  --conv_type conv \
    -b 1  --lr 0.0005 --norm none  --act swish \
   --weight checkpoints/nerv_S.pth --eval_only  --dump_images

Citation

If you find our work useful in your research, please cite:

@inproceedings{hao2021nerv,
    author = {Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav Shrivastava },
    title = {NeRV: Neural Representations for Videos s},
    booktitle = {NeurIPS},
    year={2021}
}

Contact

If you have any questions, please feel free to email the authors.

MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning ๐Ÿ†— ๐Ÿ†— ๐ŸŽ‰ NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo ๐Ÿ‘‹ , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs ยป Report Bug ยท Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1โ€ƒ Liang Pan1โ€ƒ Zhongang Cai1,2,3โ€ƒ Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023