Automatic learning-rate scheduler

Overview

AutoLRS

This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published at ICLR 2021.

A TensorFlow version will appear in this repo later.

What is AutoLRS?

Finding a good learning rate schedule for a DNN model is non-trivial. The goal of AutoLRS is to automatically tune the learning rate (LR) over the course of training without human involvement. AutoLRS chops up the whole training process into a few training stages (each consists of τ steps), and its mission is to determine a constant LR for each training stage. AutoLRS treats the validation loss as a black-box function of LR, and uses Bayesian optimization (BO) to search for the best LR which can minimize the validation loss for each training stage. Because BO would require τ steps of training to evaluate the validation loss for each LR it explores, to reduce this cost, we only apply an LR to train the DNN for τ’ (τ’ << τ) steps and train an exponential time-series forecasting model to predict the loss after τ steps. In our default setting, τ’ = τ/10 and BO explores 10 LRs in each stage, so the number of steps for searching LR is equal to the number of steps for actual training.

AutoLRS does not depend on a pre-defined LR schedule, dataset, or a specified task and is compatible with almost all optimizers. The LR schedules auto-generated by AutoLRS lead to speedup over highly hand-tuned LR schedules for several state-of-the-art DNNs including ResNet-50, Transformer, and BERT.

Setup

$ pip install --user -r requirements.txt

How to use AutoLRS for your work?

autolrs_server.py is the brain of AutoLRS, which implements the search algorithm including BO and the exponential forecasting model.

autolrs_callback.py implements a callback which you can plug into your Pytorch training loop. The callback receives commands from the server via socket, adjusting the learning rate, saving/restoring model parameters and optimizer states according to commands sent from the server.

Notes

  • You need to pass two arguments min_lr and max_lr when launching autolrs_server.py to set the LR search interval. This interval can be found by an LR range test or simply set according to your experience. Do not set the min_lr too small (for example 1e-10), otherwise, BO will waste a lot of cycles to try exploring very small LR values.
  • The current AutoLRS does not search LR for warmup steps since warmup does not have an explicit optimization objective, such as minimizing the validation loss. Warmup usually takes very few steps, and its main purpose is to prevent deeper layers in a DNN from creating training instability, especially when training using a large batch size. You can manually add a warmup stage by setting warmup_step and warmup_lr when initializing the autolrs_callback.AutoLRS callback.

Example

We provide an example of using AutoLRS to train various DNNs on the CIFAR-10 dataset. The models are imported from kuangliu's great and simple pytorch-cifar repository.

Prerequisites: Python 3.6+, PyTorch 1.0+

Run the example

$ bash run.sh

Contact

You can contact us at [email protected]. We would love to hear your questions and feedback!

Poster

Owner
Yuchen Jin
Yuchen Jin
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023