Automatic learning-rate scheduler

Overview

AutoLRS

This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published at ICLR 2021.

A TensorFlow version will appear in this repo later.

What is AutoLRS?

Finding a good learning rate schedule for a DNN model is non-trivial. The goal of AutoLRS is to automatically tune the learning rate (LR) over the course of training without human involvement. AutoLRS chops up the whole training process into a few training stages (each consists of τ steps), and its mission is to determine a constant LR for each training stage. AutoLRS treats the validation loss as a black-box function of LR, and uses Bayesian optimization (BO) to search for the best LR which can minimize the validation loss for each training stage. Because BO would require τ steps of training to evaluate the validation loss for each LR it explores, to reduce this cost, we only apply an LR to train the DNN for τ’ (τ’ << τ) steps and train an exponential time-series forecasting model to predict the loss after τ steps. In our default setting, τ’ = τ/10 and BO explores 10 LRs in each stage, so the number of steps for searching LR is equal to the number of steps for actual training.

AutoLRS does not depend on a pre-defined LR schedule, dataset, or a specified task and is compatible with almost all optimizers. The LR schedules auto-generated by AutoLRS lead to speedup over highly hand-tuned LR schedules for several state-of-the-art DNNs including ResNet-50, Transformer, and BERT.

Setup

$ pip install --user -r requirements.txt

How to use AutoLRS for your work?

autolrs_server.py is the brain of AutoLRS, which implements the search algorithm including BO and the exponential forecasting model.

autolrs_callback.py implements a callback which you can plug into your Pytorch training loop. The callback receives commands from the server via socket, adjusting the learning rate, saving/restoring model parameters and optimizer states according to commands sent from the server.

Notes

  • You need to pass two arguments min_lr and max_lr when launching autolrs_server.py to set the LR search interval. This interval can be found by an LR range test or simply set according to your experience. Do not set the min_lr too small (for example 1e-10), otherwise, BO will waste a lot of cycles to try exploring very small LR values.
  • The current AutoLRS does not search LR for warmup steps since warmup does not have an explicit optimization objective, such as minimizing the validation loss. Warmup usually takes very few steps, and its main purpose is to prevent deeper layers in a DNN from creating training instability, especially when training using a large batch size. You can manually add a warmup stage by setting warmup_step and warmup_lr when initializing the autolrs_callback.AutoLRS callback.

Example

We provide an example of using AutoLRS to train various DNNs on the CIFAR-10 dataset. The models are imported from kuangliu's great and simple pytorch-cifar repository.

Prerequisites: Python 3.6+, PyTorch 1.0+

Run the example

$ bash run.sh

Contact

You can contact us at [email protected]. We would love to hear your questions and feedback!

Poster

Owner
Yuchen Jin
Yuchen Jin
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022