Deep Learning Algorithms for Hedging with Frictions

Overview

Deep Learning Algorithms for Hedging with Frictions

This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and the Deep Hedging, as described in reference [2]. Both of them are implemented in PyTorch.

Basic Setup

The special case with following assumptions is considered:

  • the dynamic of the market satisfies that return and voalatility are constant;
  • the cost parameter is constant;
  • the endowment volatility is in the form of where is constant;
  • the frictionless strategy satisfies that and

On top of that, we consider two calibrated models: a quadratic transaction cost models, and a power cost model with elastic parameter of 3/2. In both experiments, the FBSDE solver and the Deep Hedging are implemented, as well as the asymptotic formula from Theorem 3.6 in reference [2].

For the case of quadratic costs, the ground truth from equation (3.7) in reference [2] is also compared. See Script/sample_code_quadratic_cost.py for details.

For the case of 3/2 power costs, the ground truth is no longer available in closed form. Meanwhile, in regard to the asymptotic formula g(x) in equation (3.8) in reference [2], the numerical solution by SciPy is not stable, thus it is solved via MATHEMATICA (see Script/power_cost_ODE.nb). Consequently, the value of g(x) corresponding to x ranging from 0 to 50 by 0.0001, is stored in table Data/EVA.txt. Benefitted from the oddness and the growth conditions (equation (3.9) in reference [2]), the value of g(x) on is obatinable. Following that, the numerical result of the asymptotic solution is compared with two machine learning methods. See Script/sample_code_power_cost.py for details.

The general variables and the market parameters in the code are summarized below:

Variable Meaning
q power of the trading cost, q
S_OUTSTANDING total shares in the market, s
TIME trading horizon, T
TIME_STEP time discretization, N
DT
GAMMA risk aversion,
XI_1 endowment volatility parameter,
PHI_INITIAL initial holding,
ALPHA market volatility,
MU_BAR market return,
LAM trading cost parameter,
test_samples number of test sample path, batch_size

FBSDE solver

For the detailed implementation of the FBSDE solver, see Script/sample_code_FBSDE.py;
The core dynamic is defined in the method System.forward(), and the key variables in the code are summarized below:

Variable Meaning
time_step time discretization, N
n_samples number of sample path, batch_size
dW_t iid normally distributed random variables with mean zero and variance ,
W_t Brownian motion at time t,
XI_t Brownian motion at time t,
sigma_t vector of 0
sigmaxi_t vector of 1
X_t vector of 1
Y_t vector of 0
Lam_t 1
in_t input of the neural network
sigmaZ_t output of the neural network ,
Delta_t difference between the frictional and frictionless positions (the forward component) divided by the endowment parameter,
Z_t the backward component,

Deep Hedging

For the detailed implementation of the Deep Hedging, see Script/sample_code_Deep_Hedging.py;
The core dynamic of the Deep Hedging is defined in the function TRAIN_Utility(), and the key variables in the code are summarized below:

Variable Meaning
time_step time discretization, N
n_samples number of sample path, batch_size
PHI_0_on_s initial holding divided by the total shares in the market,
W collection of the Brownian motion, throughout the trading horizon,
XI_W_on_s collection of the endowment volatility divided by the total shares in the market, throughout the trading horizon,
PHI_on_s collection of the frictional positions divided by the total shares in the market, throughout the trading horizon,
PHI_dot_on_s collection of the frictional trading rate divided by the total shares in the market, throughout the trading horizon,
loss_Utility minus goal function,

Example

Here we proivde an example for the quadratic cost case (q=2) with the trading horizon of 21 days (TIME=21).

The trading horizon is discretized in 168 time steps (TIME_STEP=168). The parameters are taken from the calibration in [1]:

Parameter Value Code
agent risk aversion GAMMA=1.66*1e-13
total shares outstanding S_OUTSTANDING=2.46*1e11
stock volatility ALPHA=1.88
stock return MU_BAR=0.5*GAMMA*ALPHA**2
endowment volatility parameter XI_1=2.19*1e10
trading cost parameter LAM=1.08*1e-10

And these lead to the optimal trading rate (left panel) and the optimal position (right panel) illustrated below, leanrt by the FBSDE solver and the Deep Hedging, as well as the ground truth and the Leading-order solution based on the asymptotic formula:

TR=21_q=2
With the same simulation with test batch size of 3000 (test_samples=3000), the expectation and the standard deviation of the goal function and the mean square error of the terminal trading rate are calculated, as summarized below:

Method
FBSDE
Deep Q-learning
Leading Order Approximation
Ground Truth

See more examples and discussion in Section 4 of paper [2].

Acknowledgments

Reference

[1] Asset Pricing with General Transaction Costs: Theory and Numerics, L. Gonon, J. Muhle-Karbe, X. Shi. [Mathematical Finance], 2021.

[2] Deep Learning Algorithms for Hedging with Frictions, X. Shi, D. Xu, Z. Zhang. [arXiv], 2021.

Owner
Xiaofei Shi
Xiaofei Shi
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022