Deep Learning Algorithms for Hedging with Frictions

Overview

Deep Learning Algorithms for Hedging with Frictions

This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and the Deep Hedging, as described in reference [2]. Both of them are implemented in PyTorch.

Basic Setup

The special case with following assumptions is considered:

  • the dynamic of the market satisfies that return and voalatility are constant;
  • the cost parameter is constant;
  • the endowment volatility is in the form of where is constant;
  • the frictionless strategy satisfies that and

On top of that, we consider two calibrated models: a quadratic transaction cost models, and a power cost model with elastic parameter of 3/2. In both experiments, the FBSDE solver and the Deep Hedging are implemented, as well as the asymptotic formula from Theorem 3.6 in reference [2].

For the case of quadratic costs, the ground truth from equation (3.7) in reference [2] is also compared. See Script/sample_code_quadratic_cost.py for details.

For the case of 3/2 power costs, the ground truth is no longer available in closed form. Meanwhile, in regard to the asymptotic formula g(x) in equation (3.8) in reference [2], the numerical solution by SciPy is not stable, thus it is solved via MATHEMATICA (see Script/power_cost_ODE.nb). Consequently, the value of g(x) corresponding to x ranging from 0 to 50 by 0.0001, is stored in table Data/EVA.txt. Benefitted from the oddness and the growth conditions (equation (3.9) in reference [2]), the value of g(x) on is obatinable. Following that, the numerical result of the asymptotic solution is compared with two machine learning methods. See Script/sample_code_power_cost.py for details.

The general variables and the market parameters in the code are summarized below:

Variable Meaning
q power of the trading cost, q
S_OUTSTANDING total shares in the market, s
TIME trading horizon, T
TIME_STEP time discretization, N
DT
GAMMA risk aversion,
XI_1 endowment volatility parameter,
PHI_INITIAL initial holding,
ALPHA market volatility,
MU_BAR market return,
LAM trading cost parameter,
test_samples number of test sample path, batch_size

FBSDE solver

For the detailed implementation of the FBSDE solver, see Script/sample_code_FBSDE.py;
The core dynamic is defined in the method System.forward(), and the key variables in the code are summarized below:

Variable Meaning
time_step time discretization, N
n_samples number of sample path, batch_size
dW_t iid normally distributed random variables with mean zero and variance ,
W_t Brownian motion at time t,
XI_t Brownian motion at time t,
sigma_t vector of 0
sigmaxi_t vector of 1
X_t vector of 1
Y_t vector of 0
Lam_t 1
in_t input of the neural network
sigmaZ_t output of the neural network ,
Delta_t difference between the frictional and frictionless positions (the forward component) divided by the endowment parameter,
Z_t the backward component,

Deep Hedging

For the detailed implementation of the Deep Hedging, see Script/sample_code_Deep_Hedging.py;
The core dynamic of the Deep Hedging is defined in the function TRAIN_Utility(), and the key variables in the code are summarized below:

Variable Meaning
time_step time discretization, N
n_samples number of sample path, batch_size
PHI_0_on_s initial holding divided by the total shares in the market,
W collection of the Brownian motion, throughout the trading horizon,
XI_W_on_s collection of the endowment volatility divided by the total shares in the market, throughout the trading horizon,
PHI_on_s collection of the frictional positions divided by the total shares in the market, throughout the trading horizon,
PHI_dot_on_s collection of the frictional trading rate divided by the total shares in the market, throughout the trading horizon,
loss_Utility minus goal function,

Example

Here we proivde an example for the quadratic cost case (q=2) with the trading horizon of 21 days (TIME=21).

The trading horizon is discretized in 168 time steps (TIME_STEP=168). The parameters are taken from the calibration in [1]:

Parameter Value Code
agent risk aversion GAMMA=1.66*1e-13
total shares outstanding S_OUTSTANDING=2.46*1e11
stock volatility ALPHA=1.88
stock return MU_BAR=0.5*GAMMA*ALPHA**2
endowment volatility parameter XI_1=2.19*1e10
trading cost parameter LAM=1.08*1e-10

And these lead to the optimal trading rate (left panel) and the optimal position (right panel) illustrated below, leanrt by the FBSDE solver and the Deep Hedging, as well as the ground truth and the Leading-order solution based on the asymptotic formula:

TR=21_q=2
With the same simulation with test batch size of 3000 (test_samples=3000), the expectation and the standard deviation of the goal function and the mean square error of the terminal trading rate are calculated, as summarized below:

Method
FBSDE
Deep Q-learning
Leading Order Approximation
Ground Truth

See more examples and discussion in Section 4 of paper [2].

Acknowledgments

Reference

[1] Asset Pricing with General Transaction Costs: Theory and Numerics, L. Gonon, J. Muhle-Karbe, X. Shi. [Mathematical Finance], 2021.

[2] Deep Learning Algorithms for Hedging with Frictions, X. Shi, D. Xu, Z. Zhang. [arXiv], 2021.

Owner
Xiaofei Shi
Xiaofei Shi
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Google Research 36 Aug 26, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022