Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

Related tags

Deep Learningdsl
Overview

DSL

Project page: https://sites.google.com/view/dsl-ram-lab/

Monocular Direct Sparse Localization in a Prior 3D Surfel Map

Authors: Haoyang Ye, Huaiyang Huang, and Ming Liu from RAM-LAB.

Paper and Video

Related publications:

@inproceedings{ye2020monocular,
  title={Monocular direct sparse localization in a prior 3d surfel map},
  author={Ye, Haoyang and Huang, Huaiyang and Liu, Ming},
  booktitle={2020 IEEE International Conference on Robotics and Automation (ICRA)},
  pages={8892--8898},
  year={2020},
  organization={IEEE}
}
@inproceedings{ye20213d,
  title={3D Surfel Map-Aided Visual Relocalization with Learned Descriptors},
  author={Ye, Haoyang and Huang, Huaiyang and Hutter, Marco and Sandy, Timothy and Liu, Ming},
  booktitle={2021 International Conference on Robotics and Automation (ICRA)},
  pages={5574-5581},
  year={2021},
  organization={IEEE}
}

Video: https://www.youtube.com/watch?v=LTihCBGcURo

Dependency

  1. Pangolin.
  2. CUDA.
  3. Ceres-solver.
  4. PCL, the default version accompanying by ROS.
  5. OpenCV, the default version accompanying by ROS.

Build

  1. git submodule update --init --recursive
  2. mkdir build && cd build
  3. cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo
  4. make -j8

Example

The sample config file can be downloaded from this link.

To run the example:

[path_to_build]/src/dsl_main --path "[path_to_dataset]/left_pinhole"

Preparing Your Own Data

  1. Collect LiDAR and camera data.
  2. Build LiDAR map and obtain LiDAR poses (the poses are not necessary).
  3. Pre-process LiDAR map to make the [path_to_dataset]/*.pcd map file contains normal_x, normal_y, normal_z fields (downsample & normal estimation).
  4. Extract and undistort images into [path_to_dataset]/images.
  5. Set the first camera pose to initial_pose and other camera parameters in [path_to_dataset]/config.yaml.

Note

This implementation of DSL takes Ceres Solver as backend, which is different from the the implementation of the original paper with DSO-backend. This leads to different performance, i.e., speed and accuracy, compared to the reported results.

Credits

This work is inspired from several open-source projects, such as DSO, DSM, Elastic-Fusion, SuperPoint, DBoW2, NetVlad, LIO-mapping and etc.

Licence

The source code is released under GPL-3.0.

Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022