Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Related tags

Deep LearningChIRo
Overview

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations

ScreenShot

This directory contains the model architectures and experimental setups used for ChIRo, SchNet, DimeNet++, and SphereNet on the four tasks considered in the preprint:

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations

These four tasks are:

  1. Contrastive learning to cluster conformers of different stereoisomers in a learned latent space
  2. Classification of chiral centers as R/S
  3. Classification of the sign (+/-; l/d) of rotated circularly polarized light
  4. Ranking enantiomers by their docking scores in an enantiosensitive protein pocket.

The exact data splits used for tasks (1), (2), and (4) can be downloaded from:

https://figshare.com/s/e23be65a884ce7fc8543

See the appendix of "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations" for details on how the datasets for task (3) were extracted and filtered from the commercial Reaxys database.


This directory is organized as follows:

  • Subdirectory model/ contains the implementation of ChIRo.

    • model/alpha_encoder.py contains the network architecture of ChIRo

    • model/embedding_functions.py contains the featurization of the input conformers (RDKit mol objects) for ChIRo.

    • model/datasets_samplers.py contains the Pytorch / Pytorch Geometric data samplers used for sampling conformers in each training batch.

    • model/train_functions.py and model/train_models.py contain supporting training/inference loops for each experiment with ChIRo.

    • model/optimization_functions.py contains the loss functions used in the experiments with ChIRo.

    • Subdirectory model/gnn_3D/ contains the implementations of SchNet, DimeNet++, and SphereNet used for each experiment.

      • model/gnn_3D/schnet.py contains the publicly available code for SchNet, with adaptations for readout.
      • model/gnn_3D/dimenet_pp.py contains the publicly available code for DimeNet++, with adaptations for readout.
      • model/gnn_3D/spherenet.py contains the publicly available code for SphereNet, with adaptations for readout.
      • model/gnn_3D/train_functions.py and model/gnn_3D/train_models.py contain the training/inference loops for each experiment with SchNet, DimeNet++, or SphereNet.
      • model/gnn_3D/optimization_functions.py contains the loss functions used in the experiments with SchNet, DimeNet++, or SphereNet.
  • Subdirectory params_files/ contains the hyperparameters used to define exact network initializations for ChIRo, SchNet, DimeNet++, and SphereNet for each experiment. The parameter .json files are specified with a random seed = 1, and the first fold of cross validation for the l/d classifcation task. For the experiments specified in the paper, we use random seeds = 1,2,3 when repeating experiments across three training/test trials.

  • Subdirectory training_scripts/ contains the python scripts to run each of the four experiments, for each of the four 3D models ChIRo, SchNet, DimeNet++, and SphereNet. Before running each experiment, move the corresponding training script to the parent directory.

  • Subdirectory hyperopt/ contains hyperparameter optimization scripts for ChIRo using Raytune.

  • Subdirectory experiment_analysis/ contains jupyter notebooks for analyzing results of each experiment.

  • Subdirectory paper_results/ contains the parameter files, model parameter dictionaries, and loss curves for each experiment reported in the paper.


To run each experiment, first create a conda environment with the following dependencies:

  • python = 3.8.6
  • pytorch = 1.7.0
  • torchaudio = 0.7.0
  • torchvision = 0.8.1
  • torch-geometric = 1.6.3
  • torch-cluster = 1.5.8
  • torch-scatter = 2.0.5
  • torch-sparce = 0.6.8
  • torch-spline-conv = 1.2.1
  • numpy = 1.19.2
  • pandas = 1.1.3
  • rdkit = 2020.09.4
  • scikit-learn = 0.23.2
  • matplotlib = 3.3.3
  • scipy = 1.5.2
  • sympy = 1.8
  • tqdm = 4.58.0

Then, download the datasets (with exact training/validation/test splits) from https://figshare.com/s/e23be65a884ce7fc8543 and place them in a new directory final_data_splits/

You may then run each experiment by calling:

python training_{experiment}_{model}.py params_files/params_{experiment}_{model}.json {path_to_results_directory}/

For instance, you can run the docking experiment for ChIRo with a random seed of 1 (editable in the params .json file) by calling:

python training_binary_ranking.py params_files/params_binary_ranking_ChIRo.json results_binary_ranking_ChIRo/

After training, this will create a results directory containing model checkpoints, best model parameter dictionaries, and results on the test set (if applicable).

Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022