Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Related tags

Deep LearningChIRo
Overview

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations

ScreenShot

This directory contains the model architectures and experimental setups used for ChIRo, SchNet, DimeNet++, and SphereNet on the four tasks considered in the preprint:

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations

These four tasks are:

  1. Contrastive learning to cluster conformers of different stereoisomers in a learned latent space
  2. Classification of chiral centers as R/S
  3. Classification of the sign (+/-; l/d) of rotated circularly polarized light
  4. Ranking enantiomers by their docking scores in an enantiosensitive protein pocket.

The exact data splits used for tasks (1), (2), and (4) can be downloaded from:

https://figshare.com/s/e23be65a884ce7fc8543

See the appendix of "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations" for details on how the datasets for task (3) were extracted and filtered from the commercial Reaxys database.


This directory is organized as follows:

  • Subdirectory model/ contains the implementation of ChIRo.

    • model/alpha_encoder.py contains the network architecture of ChIRo

    • model/embedding_functions.py contains the featurization of the input conformers (RDKit mol objects) for ChIRo.

    • model/datasets_samplers.py contains the Pytorch / Pytorch Geometric data samplers used for sampling conformers in each training batch.

    • model/train_functions.py and model/train_models.py contain supporting training/inference loops for each experiment with ChIRo.

    • model/optimization_functions.py contains the loss functions used in the experiments with ChIRo.

    • Subdirectory model/gnn_3D/ contains the implementations of SchNet, DimeNet++, and SphereNet used for each experiment.

      • model/gnn_3D/schnet.py contains the publicly available code for SchNet, with adaptations for readout.
      • model/gnn_3D/dimenet_pp.py contains the publicly available code for DimeNet++, with adaptations for readout.
      • model/gnn_3D/spherenet.py contains the publicly available code for SphereNet, with adaptations for readout.
      • model/gnn_3D/train_functions.py and model/gnn_3D/train_models.py contain the training/inference loops for each experiment with SchNet, DimeNet++, or SphereNet.
      • model/gnn_3D/optimization_functions.py contains the loss functions used in the experiments with SchNet, DimeNet++, or SphereNet.
  • Subdirectory params_files/ contains the hyperparameters used to define exact network initializations for ChIRo, SchNet, DimeNet++, and SphereNet for each experiment. The parameter .json files are specified with a random seed = 1, and the first fold of cross validation for the l/d classifcation task. For the experiments specified in the paper, we use random seeds = 1,2,3 when repeating experiments across three training/test trials.

  • Subdirectory training_scripts/ contains the python scripts to run each of the four experiments, for each of the four 3D models ChIRo, SchNet, DimeNet++, and SphereNet. Before running each experiment, move the corresponding training script to the parent directory.

  • Subdirectory hyperopt/ contains hyperparameter optimization scripts for ChIRo using Raytune.

  • Subdirectory experiment_analysis/ contains jupyter notebooks for analyzing results of each experiment.

  • Subdirectory paper_results/ contains the parameter files, model parameter dictionaries, and loss curves for each experiment reported in the paper.


To run each experiment, first create a conda environment with the following dependencies:

  • python = 3.8.6
  • pytorch = 1.7.0
  • torchaudio = 0.7.0
  • torchvision = 0.8.1
  • torch-geometric = 1.6.3
  • torch-cluster = 1.5.8
  • torch-scatter = 2.0.5
  • torch-sparce = 0.6.8
  • torch-spline-conv = 1.2.1
  • numpy = 1.19.2
  • pandas = 1.1.3
  • rdkit = 2020.09.4
  • scikit-learn = 0.23.2
  • matplotlib = 3.3.3
  • scipy = 1.5.2
  • sympy = 1.8
  • tqdm = 4.58.0

Then, download the datasets (with exact training/validation/test splits) from https://figshare.com/s/e23be65a884ce7fc8543 and place them in a new directory final_data_splits/

You may then run each experiment by calling:

python training_{experiment}_{model}.py params_files/params_{experiment}_{model}.json {path_to_results_directory}/

For instance, you can run the docking experiment for ChIRo with a random seed of 1 (editable in the params .json file) by calling:

python training_binary_ranking.py params_files/params_binary_ranking_ChIRo.json results_binary_ranking_ChIRo/

After training, this will create a results directory containing model checkpoints, best model parameter dictionaries, and results on the test set (if applicable).

Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

335 Jan 09, 2023
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022