Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Overview

Boundary-Guided-Context-Aggregation

pipeline

Boundary Guided Context Aggregation for Semantic Segmentation

Haoxiang Ma, Hongyu Yang, Di Huang
In BMVC'2021

Paper

Introduction

This repository is official PyTorch implementation for our BMVC2021 paper. The code is based on semseg

Environments

  • Anaconda3
  • Python == 3.7.9
  • PyTorch == 1.7.1
  • CUDA ==11.0

Getting Started

Installation

git clone https://github.com/mahaoxiang822/Boundary-Guided-Context-Aggregation.git
cd Boundary-Guided-Context-Aggregation
conda create -n bcanet python=3.7
conda activate bcanet
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch
pip install -r requirements.txt

Prepare Datasets

For Cityscapes, you can download from Cityscapes

For ADE20K, you can download from ADE20K

You should modify your dataset paths specified in folder config

Train

  • Download ImageNet pre-trained from GoogleDrive and put them under folder initmodel for weight initialization.
  • Specify the gpu used in config then do training:

Cityscapes

sh tool/train.sh cityscapes [bcanet50/bcanet101]

ADE20K

sh tool/trainade.sh ade20k [bcanet50/bcanet101]

Evaluation

  • Specify the gpu used in config and the checkpoint then do training:
  • You can download the pre-trained model on cityscapes from GoogleDrive

Validation on Cityscapes

sh tool/test.sh cityscapes [bcanet50/bcanet101]

Test on Cityscapes

sh tool/test.sh cityscapes [bcanet50/bcanet101]

Validation on ADE20K

sh tool/testade.sh ade20k [bcanet50/bcanet101]

Citation

If any part of our paper and repository is helpful to your work, please generously cite with:

@InProceedings{Ma_2021_BMVC,
    author    = {Haoxiang, Ma and Hongyu, Yang and Huang, Di},
    title     = {Boundary Guided Context Aggregation for Semantic Segmentation},
    booktitle = {The British Machine Vision Conference (BMVC)},
    month     = {November},
    year      = {2021}
Owner
Haoxiang Ma
Haoxiang Ma
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022