Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Related tags

Deep LearningGraphLoG
Overview

Self-supervised Graph-level Representation Learning with Local and Global Structure

Introduction

This project is an implementation of ``Self-supervised Graph-level Representation Learning with Local and Global Structure'' in PyTorch, which is accepted as Short Talk by ICML 2021. We provide the pre-training and fine-tuning codes and also the pre-trained model on chemistry domain in this repository, and a more complete code version including the biology domain will be announced on the TorchDrug platform developed by MilaGraph group. Also, we would like to appreciate the excellent work of Pretrain-GNNs which lays a solid foundation for our work.

More details of this work can be found in our paper: [Paper (arXiv)].

Prerequisites

We develop this project with Python3.6 and following Python packages:

Pytorch                   1.1.0
torch-cluster             1.4.5                    
torch-geometric           1.0.3                    
torch-scatter             1.4.0                    
torch-sparse              0.4.4                    
torch-spline-conv         1.0.6 
rdkit                     2019.03.1

P.S. In our project, these packages can be successfully installed and work together under CUDA/9.0 and cuDNN/7.0.5.

Dataset Preparation

In the root direction of this project, create a folder for storing datasets:

mkdir dataset

The pre-training and fine-tuning datasets on chemistry domain can be downloaded from the project page of Pretrain-GNNs.

Pre-training

To pre-train with the proposed GraphLoG method, simply run:

python pretrain_graphlog.py --output_model_file $pre-trained_model$

Fine-tuning

To fine-tune on a downstream dataset, simply run (five independent runs will perform):

python finetune.py --input_model_file $pre-trained_model$ \
                   --dataset $downstream_dataset$

Pretrained Model

We provide the GIN model pre-trained by GraphLoG at ./models/.

Citation

If this work helps your research, you can kindly cite the following paper (will be updated when the ICML paper is published).

@article{xu2021self-supervised,
  title={Self-supervised Graph-level Representation Learning with Local and Global Structure},
  author={Xu, Minghao and Wang, Hang and Ni, Bingbing and Guo, Hongyu and Tang, Jian},
  journal={arXiv preprint arXiv:2106.04113},
  year={2021}
}
Owner
MilaGraph
Research group led by Prof. Jian Tang at Mila-Quebec AI Institute (https://mila.quebec/) focusing on graph representation learning and graph neural networks.
MilaGraph
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022