Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Overview

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine!

Motivation

Would you like fully reproducible research or reusable workflows that seamlessly run on HPC clusters? Tired of writing and managing large Slurm submission scripts? Do you have comment out large parts of your pipeline whenever its results have been generated? Don't waste your precious time! awflow allows you to directly describe complex pipelines in Python, that run on your personal computer and large HPC clusters.

import awflow as aw
import glob
import numpy as np

n = 100000
tasks = 10

@aw.cpus(4)  # Request 4 CPU cores
@aw.memory("4GB")  # Request 4 GB of RAM
@aw.postcondition(aw.num_files('pi-*.npy', 10))
@aw.tasks(tasks)  # Requests '10' parallel tasks
def estimate(task_index):
    print("Executing task {} / {}.".format(task_index + 1, tasks))
    x = np.random.random(n)
    y = np.random.random(n)
    pi_estimate = (x**2 + y**2 <= 1)
    np.save('pi-' + str(task_index) + '.npy', pi_estimate)

@aw.dependency(estimate)
def merge():
    files = glob.glob('pi-*.npy')
    stack = np.vstack([np.load(f) for f in files])
    np.save('pi.npy', stack.sum() / (n * tasks) * 4)

@aw.dependency(merge)
@aw.postcondition(aw.exists('pi.npy'))  # Prevent execution if postcondition is satisfied.
def show_result():
    print("Pi:", np.load('pi.npy'))

aw.execute()

Executing this Python program (python examples/pi.py) on a Slurm HPC cluster will launch the following jobs.

           1803299       all    merge username PD       0:00      1 (Dependency)
           1803300       all show_res username PD       0:00      1 (Dependency)
     1803298_[6-9]       all estimate username PD       0:00      1 (Resources)
         1803298_3       all estimate username  R       0:01      1 compute-xx
         1803298_4       all estimate username  R       0:01      1 compute-xx
         1803298_5       all estimate username  R       0:01      1 compute-xx

Check the examples directory and guide to explore the functionality.

Installation

The awflow package is available on PyPi, which means it is installable via pip.

[email protected]:~ $ pip install awflow

If you would like the latest features, you can install it using this Git repository.

[email protected]:~ $ pip install git+https://github.com/JoeriHermans/awflow

If you would like to run the examples as well, be sure to install the optional example dependencies.

[email protected]:~ $ pip install 'awflow[examples]'

Usage

The core concept in awflow is the notion of a task. Essentially, this is a method that will be executed in your workflow. Tasks are represented as a node in a directed graph. In doing so, we can easily specify (task) dependencies. In addition, we can attribute properties to tasks using decorators defined by awflow. This allows you to specify things like CPU cores, GPU's and even postconditions. Follow the guide for additional examples and descriptions.

Decorators

TODO

Workflow storage

By default, workflows will be stored in the current working direction within the ./workflows folder. If desired, a central storage directory can be used by specifying the AWFLOW_STORAGE environment variable.

The awflow utility

This package comes with a utility program to manage submitted, failed, and pending workflows. Its functionality can be inspected by executing awflow -h. In addition, to streamline the management of workflows, we recommend to give every workflow as specific name to easily identify a workflow. This name does not have to be unique for every distinct workflow execution.

aw.execute(name=r'Some name')

Executing awflow list after submitting the pipeline with python pipeline.py [args] will yield.

[email protected]:~ $ awflow list
  Postconditions      Status      Backend     Name          Location
 ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
  50%                 Running     Slurm       Some name     /home/jhermans/awflow/examples/.workflows/tmpntmc712a

Modules

[email protected]:~ $ awflow cancel [workflow] TODO

[email protected]:~ $ awflow clear TODO

[email protected]:~ $ awflow list TODO

[email protected]:~ $ awflow inspect [workflow] TODO

Contributing

See CONTRIBUTING.md.

Roadmap

  • Documentation
  • README

License

As described in the LICENSE file.

You might also like...
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

Open-sourcing the Slates Dataset for recommender systems research
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon Research.

BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

Comments
  • [BUG] conda activation crashes standalone execution

    [BUG] conda activation crashes standalone execution

    Issue description

    In the standalone backend on Unix systems, the os.system(command) used here

    https://github.com/JoeriHermans/awflow/blob/1fcf255debfbc18d39a6b2baa387bbc85050209d/awflow/backends/standalone/executor.py#L53-L60

    actually calls /bin/sh. For some OS, like Ubuntu, sh links to dash which does not support the scripting features required by conda activations. This results in runtime errors like

    sh: 5: /home/username/miniconda3/envs/envname/etc/conda/activate.d/activate-binutils_linux-64.sh: Syntax error: "(" unexpected
    

    Proposed solution

    A solution would be to change the shell with which the commands are called. This is possible thanks to the subprocess package. A good default would be bash as almost all Unix systems use it.

        if node.tasks > 1:
            for task_index in range(node.tasks):
                task_command = command + ' ' + str(task_index)
                return_code = subprocess.call(task_command, shell=True, executable='/bin/bash')
        else:
            return_code = subprocess.call(command, shell=True, executable='/bin/bash')
    

    One could also add a way to change this default. Additionally, wouldn't it be better to launch the tasks as background jobs for the standalone backend (simply add & at the end of the command) ?

    bug 
    opened by francois-rozet 1
  • [BUG] pip install fails for version 0.0.4

    [BUG] pip install fails for version 0.0.4

    $ pip install awflow==0.0.4
    Collecting awflow==0.0.4
      Using cached awflow-0.0.4.tar.gz (19 kB)
        ERROR: Command errored out with exit status 1:
         command: /home/francois/awf/bin/python -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-ou4rxs3q/awflow/setup.py'"'"'; __file__='"'"'/tmp/pip-install-ou4rxs3q/awflow/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' egg_info --egg-base /tmp/pip-install-ou4rxs3q/awflow/pip-egg-info
             cwd: /tmp/pip-install-ou4rxs3q/awflow/
        Complete output (7 lines):
        Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "/tmp/pip-install-ou4rxs3q/awflow/setup.py", line 54, in <module>
            'examples': _load_requirements('requirements_examples.txt')
          File "/tmp/pip-install-ou4rxs3q/awflow/setup.py", line 17, in _load_requirements
            with open(file_name, 'r') as file:
        FileNotFoundError: [Errno 2] No such file or directory: 'requirements_examples.txt'
        ----------------------------------------
    ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output.
    
    bug high priority 
    opened by francois-rozet 1
  • Jobs submitted with awflow doesn't work with Multiprocessing.pool

    Jobs submitted with awflow doesn't work with Multiprocessing.pool

    Hi,

    I tried submitting a few jobs with awflow but somehow each time I run it with slurm backend it never produces a pool.starmap and the process simply times out on cluster. `0 0 8196756 5.1g 85664 S 0.0 1.0 2:12.27 python 790517 rnath 20 0 7953388 5.0g 12020 S 0.0 1.0 0:01.66 python

    790518 rnath 20 0 7953388 5.0g 12020 S 0.0 1.0 0:01.45 python

    790519 rnath 20 0 7953388 5.0g 12020 S 0.0 1.0 0:01.76 python

    790520 rnath 20 0 7953388 5.0g 12020 S 0.0 1.0 0:02.02 python

    790521 rnath 20 0 7953388 5.0g 12020 S 0.0 1.0 0:01.99 python `

    An example of what happens in the cluster where the processes are spawned but each process uses 0 % of the cpu slurmstepd: error: *** JOB 1933332 ON compute-04 CANCELLED AT 2022-04-08T19:33:26 DUE TO TIME LIMIT ***

    opened by digirak 0
Releases(0.1.0)
Owner
Joeri Hermans
Combining Machine Learning and Physics to automate science.
Joeri Hermans
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Bayesian algorithm execution (BAX)

Bayesian Algorithm Execution (BAX) Code for the paper: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mut

Willie Neiswanger 38 Dec 08, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022