Bu repo SAHI uygulamasını mantığını öğreniyoruz.

Overview

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz

teaser

Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphanesine yeni bir model nasıl ekleneceğini anlattım.

Geliştiriciler için SAHI Yol Haritası

1. DetectionModel(Detection)

Class ismini oluştururkan model isminin yanına DetectionModel(Detection) yazıyoruz.

Örnekler:

1.1 Mmdet:

class MmdetDetectionModel(DetectionModel)

1.2 Yolov5:

class Yolov5DetectionModel(DetectionModel):

1.3 Detectron2:

class Detectron2DetectionModel(DetectionModel)

1.4 TorchVision:

class TorchVisionDetectionModel(DetectionModel)

2.load_model():

Bu fonksiyon 3 aşamadan oluşmaktadır.

a. Kütüphaneyi import ediyoruz. PYPI desteği olmayan kütüphanelerin kurulumunu desteklenmiyor.

b. Modele girecek resimlerin image_size değerlerini güncellemeniz gerekiyor.

c. category_mapping değişkenini {"1": "pedestrian"} bu formatta olması gerekiyor.

Örnekler:

2.1 Mmdet:

def load_model(self):
    """
    Detection model is initialized and set to self.model.
    """
    try:
        import mmdet
    except ImportError:
        raise ImportError(
            'Please run "pip install -U mmcv mmdet" ' "to install MMDetection first for MMDetection inference."
        )

    from mmdet.apis import init_detector

    # create model
    model = init_detector(
        config=self.config_path,
        checkpoint=self.model_path,
        device=self.device,
    )

    # update model image size
    if self.image_size is not None:
        model.cfg.data.test.pipeline[1]["img_scale"] = (self.image_size, self.image_size)

    # set self.model
    self.model = model

    # set category_mapping
    if not self.category_mapping:
        category_mapping = {str(ind): category_name for ind, category_name in enumerate(self.category_names)}
        self.category_mapping = category_mapping

2.2 Yolov5:

    def load_model(self):
        """
        Detection model is initialized and set to self.model.
        """
        try:
            import yolov5
        except ImportError:
            raise ImportError('Please run "pip install -U yolov5" ' "to install YOLOv5 first for YOLOv5 inference.")

        # set model
        try:
            model = yolov5.load(self.model_path, device=self.device)
            model.conf = self.confidence_threshold
            self.model = model
        except Exception as e:
            TypeError("model_path is not a valid yolov5 model path: ", e)

        # set category_mapping
        if not self.category_mapping:
            category_mapping = {str(ind): category_name for ind, category_name in enumerate(self.category_names)}
            self.category_mapping = category_mapping

2.3 Detectron2:

def load_model(self):
    try:
        import detectron2
    except ImportError:
        raise ImportError(
            "Please install detectron2. Check "
            "`https://detectron2.readthedocs.io/en/latest/tutorials/install.html` "
            "for instalattion details."
        )

    from detectron2.config import get_cfg
    from detectron2.data import MetadataCatalog
    from detectron2.engine import DefaultPredictor
    from detectron2.model_zoo import model_zoo

    cfg = get_cfg()
    cfg.MODEL.DEVICE = self.device

    try:  # try to load from model zoo
        config_file = model_zoo.get_config_file(self.config_path)
        cfg.merge_from_file(config_file)
        cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(self.config_path)
    except Exception as e:  # try to load from local
        print(e)
        if self.config_path is not None:
            cfg.merge_from_file(self.config_path)
        cfg.MODEL.WEIGHTS = self.model_path
    # set input image size
    if self.image_size is not None:
        cfg.INPUT.MIN_SIZE_TEST = self.image_size
        cfg.INPUT.MAX_SIZE_TEST = self.image_size
    # init predictor
    model = DefaultPredictor(cfg)

    self.model = model

    # detectron2 category mapping
    if self.category_mapping is None:
        try:  # try to parse category names from metadata
            metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0])
            category_names = metadata.thing_classes
            self.category_names = category_names
            self.category_mapping = {
                str(ind): category_name for ind, category_name in enumerate(self.category_names)
            }
        except Exception as e:
            logger.warning(e)
            # https://detectron2.readthedocs.io/en/latest/tutorials/datasets.html#update-the-config-for-new-datasets
            if cfg.MODEL.META_ARCHITECTURE == "RetinaNet":
                num_categories = cfg.MODEL.RETINANET.NUM_CLASSES
            else:  # fasterrcnn/maskrcnn etc
                num_categories = cfg.MODEL.ROI_HEADS.NUM_CLASSES
            self.category_names = [str(category_id) for category_id in range(num_categories)]
            self.category_mapping = {
                str(ind): category_name for ind, category_name in enumerate(self.category_names)
            }
    else:
        self.category_names = list(self.category_mapping.values())

2.4 TorchVision:

def load_model(self):
    try:
        import torchvision
    except ImportError:
        raise ImportError(
            "torchvision is not installed. Please run 'pip install -U torchvision to use this "
            "torchvision models'"
        )

    # set model
    try:
        from sahi.utils.torch import torch

        model = self.config_path
        model.load_state_dict(torch.load(self.model_path))
        model.eval()
        model = model.to(self.device)
        self.model = model
    except Exception as e:
        raise Exception(f"Failed to load model from {self.model_path}. {e}")

    # set category_mapping
    from sahi.utils.torchvision import COCO_CLASSES

    if self.category_mapping is None:
        category_names = {str(i): COCO_CLASSES[i] for i in range(len(COCO_CLASSES))}
        self.category_mapping = category_names

3.perform_inference():

Bu fonksiyonda 3 aşamada oluşmaktadır.

a. Kütüphanenin import edilmesi gerekiyor.

b. Resimlerin size değerinin güncellenmesi lazım.

c. Modelin tahmin kodlarının yazılması gerekiyor.

3.1 Mmdet:

def perform_inference(self, image: np.ndarray, image_size: int = None):
    """
    Prediction is performed using self.model and the prediction result is set to self._original_predictions.
    Args:
        image: np.ndarray
            A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
        image_size: int
            Inference input size.
    """
    try:
        import mmdet
    except ImportError:
        raise ImportError(
            'Please run "pip install -U mmcv mmdet" ' "to install MMDetection first for MMDetection inference."
        )

    # Confirm model is loaded
    assert self.model is not None, "Model is not loaded, load it by calling .load_model()"

    # Supports only batch of 1
    from mmdet.apis import inference_detector

    # update model image size
    if image_size is not None:
        warnings.warn("Set 'image_size' at DetectionModel init.", DeprecationWarning)
        self.model.cfg.data.test.pipeline[1]["img_scale"] = (image_size, image_size)

    # perform inference
    if isinstance(image, np.ndarray):
        # https://github.com/obss/sahi/issues/265
        image = image[:, :, ::-1]
    # compatibility with sahi v0.8.15
    if not isinstance(image, list):
        image = [image]
    prediction_result = inference_detector(self.model, image)

    self._original_predictions = prediction_result

3.2 Yolov5:

def perform_inference(self, image: np.ndarray, image_size: int = None):
    """
    Prediction is performed using self.model and the prediction result is set to self._original_predictions.
    Args:
        image: np.ndarray
            A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
        image_size: int
            Inference input size.
    """
    try:
        import yolov5
    except ImportError:
        raise ImportError('Please run "pip install -U yolov5" ' "to install YOLOv5 first for YOLOv5 inference.")

    # Confirm model is loaded
    assert self.model is not None, "Model is not loaded, load it by calling .load_model()"

    if image_size is not None:
        warnings.warn("Set 'image_size' at DetectionModel init.", DeprecationWarning)
        prediction_result = self.model(image, size=image_size)
    elif self.image_size is not None:
        prediction_result = self.model(image, size=self.image_size)
    else:
        prediction_result = self.model(image)

    self._original_predictions = prediction_result

3.3 Detectron2:

def perform_inference(self, image: np.ndarray, image_size: int = None):
    """
    Prediction is performed using self.model and the prediction result is set to self._original_predictions.
    Args:
        image: np.ndarray
            A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
    """
    try:
        import detectron2
    except ImportError:
        raise ImportError("Please install detectron2 via `pip install detectron2`")

    # confirm image_size is not provided
    if image_size is not None:
        warnings.warn("Set 'image_size' at DetectionModel init.")

    # Confirm model is loaded
    if self.model is None:
        raise RuntimeError("Model is not loaded, load it by calling .load_model()")

    if isinstance(image, np.ndarray) and self.model.input_format == "BGR":
        # convert RGB image to BGR format
        image = image[:, :, ::-1]

    prediction_result = self.model(image)

    self._original_predictions = prediction_result

3.4 TorchVision:

def perform_inference(self, image: np.ndarray, image_size: int = None):
    """
    Prediction is performed using self.model and the prediction result is set to self._original_predictions.
    Args:
        image: np.ndarray
            A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
        image_size: int
            Inference input size.
    """
    if self.model is None:
        raise ValueError("model not loaded.")

    from sahi.utils.torchvision import numpy_to_torch, resize_image

    if self.image_size is not None:
        image = resize_image(image, self.image_size)
        image = numpy_to_torch(image)
        prediction_result = self.model([image])

    else:
        prediction_result = self.model([image])

    self._original_predictions = prediction_result

4.num_categories():

Bu fonksiyonda tahmin edilen kategorilerin sayısını döndürmesi isteniyor.

4.1 Mmdet:

def num_categories(self):
    """
    Returns number of categories
    """
    if isinstance(self.model.CLASSES, str):
        num_categories = 1
    else:
        num_categories = len(self.model.CLASSES)
    return num_categories

4.2 Yolov5:

def num_categories(self):
    """
    Returns number of categories
    """
    return len(self.model.names)

4.3 Detectron2:

def num_categories(self):
    """
    Returns number of categories
    """
    num_categories = len(self.category_mapping)
    return num_categories

4.4 TorchVision:

def num_categories(self):
    """
    Returns number of categories
    """
    return len(self.category_mapping)

5.has_mask():

Bu fonksiyonda tahmin edilen kategorilerin maskleri olup olmadığını döndürmesi isteniyor.

5.1 Mmdet:

def has_mask(self):
    """
    Returns if model output contains segmentation mask
    """
    has_mask = self.model.with_mask
    return has_mask```
5.2 Yolov5:

5.2 Yolov5:

def has_mask(self):
    """
    Returns if model output contains segmentation mask
    """
    has_mask = self.model.with_mask
    return has_mask

5.3 Detectron2:

if get_bbox_from_bool_mask(mask) is not None:
    bbox = None
else:
    continue

5.4 TorchVision:

def has_mask(self):
    """
    Returns if model output contains segmentation mask
    """
    return self.model.with_mask

6.category_names():

Bu fonksiyonda tahmin edilen kategorilerin isimlerini döndürmesi isteniyor.

6.1 Mmdet:

def category_names(self):
    if type(self.model.CLASSES) == str:
        # https://github.com/open-mmlab/mmdetection/pull/4973
        return (self.model.CLASSES,)
    else:
        return self.model.CLASSES

6.2 Yolov5:

def category_names(self):
    return self.model.names

6.3 Detectron2:

# detectron2 category mapping
if self.category_mapping is None:
    try:  # try to parse category names from metadata
        metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0])
        category_names = metadata.thing_classes
        self.category_names = category_names

6.4 TorchVision:

def category_names(self):
    return self.category_mapping

7._create_object_prediction_list_from_original_predictions():

Bu fonksiyon da bir şablon üzerinden kodlama yapmanız sizin için daha rahat olacaktır. Fonksiyonunu altına direk bunu yazabilirsiniz.

original_predictions = self._original_predictions

# compatilibty for sahi v0.8.15
if isinstance(shift_amount_list[0], int):
    shift_amount_list = [shift_amount_list]
if full_shape_list is not None and isinstance(full_shape_list[0], int):
    full_shape_list = [full_shape_list]

Bundan sonra modeliniz tahminleme yaptıktan sonra bbox,mask,category_id, category_name ve score değerleri döndürmesi isteniyor. Bu değerleri object_prediction değişkeninin içindeki none değerleri yerine yazmanız gerekiyor. Aşağıdaki şablon yapısını da bozmamanız istenmektedir.

    object_prediction = ObjectPrediction(
        bbox=None,
        bool_mask=None,
        category_id=None,
        category_name=sNone,
        shift_amount=shift_amount,
        score=None,
        full_shape=full_shape,
    )
    object_prediction_list.append(object_prediction)

# detectron2 DefaultPredictor supports single image
object_prediction_list_per_image = [object_prediction_list]

self._object_prediction_list_per_image = object_prediction_list_per_image

7.1 Mmdet:

def _create_object_prediction_list_from_original_predictions(
    self,
    shift_amount_list: Optional[List[List[int]]] = [[0, 0]],
    full_shape_list: Optional[List[List[int]]] = None,
):
    """
    self._original_predictions is converted to a list of prediction.ObjectPrediction and set to
    self._object_prediction_list_per_image.
    Args:
        shift_amount_list: list of list
            To shift the box and mask predictions from sliced image to full sized image, should
            be in the form of List[[shift_x, shift_y],[shift_x, shift_y],...]
        full_shape_list: list of list
            Size of the full image after shifting, should be in the form of
            List[[height, width],[height, width],...]
    """
    original_predictions = self._original_predictions
    category_mapping = self.category_mapping

    # compatilibty for sahi v0.8.15
    shift_amount_list = fix_shift_amount_list(shift_amount_list)
    full_shape_list = fix_full_shape_list(full_shape_list)

    # parse boxes and masks from predictions
    num_categories = self.num_categories
    object_prediction_list_per_image = []
    for image_ind, original_prediction in enumerate(original_predictions):
        shift_amount = shift_amount_list[image_ind]
        full_shape = None if full_shape_list is None else full_shape_list[image_ind]

        if self.has_mask:
            boxes = original_prediction[0]
            masks = original_prediction[1]
        else:
            boxes = original_prediction

        object_prediction_list = []

        # process predictions
        for category_id in range(num_categories):
            category_boxes = boxes[category_id]
            if self.has_mask:
                category_masks = masks[category_id]
            num_category_predictions = len(category_boxes)

            for category_predictions_ind in range(num_category_predictions):
                bbox = category_boxes[category_predictions_ind][:4]
                score = category_boxes[category_predictions_ind][4]
                category_name = category_mapping[str(category_id)]

                # ignore low scored predictions
                if score < self.confidence_threshold:
                    continue

                # parse prediction mask
                if self.has_mask:
                    bool_mask = category_masks[category_predictions_ind]
                else:
                    bool_mask = None

                # fix negative box coords
                bbox[0] = max(0, bbox[0])
                bbox[1] = max(0, bbox[1])
                bbox[2] = max(0, bbox[2])
                bbox[3] = max(0, bbox[3])

                # fix out of image box coords
                if full_shape is not None:
                    bbox[0] = min(full_shape[1], bbox[0])
                    bbox[1] = min(full_shape[0], bbox[1])
                    bbox[2] = min(full_shape[1], bbox[2])
                    bbox[3] = min(full_shape[0], bbox[3])

                # ignore invalid predictions
                if not (bbox[0] < bbox[2]) or not (bbox[1] < bbox[3]):
                    logger.warning(f"ignoring invalid prediction with bbox: {bbox}")
                    continue

                object_prediction = ObjectPrediction(
                    bbox=bbox,
                    category_id=category_id,
                    score=score,
                    bool_mask=bool_mask,
                    category_name=category_name,
                    shift_amount=shift_amount,
                    full_shape=full_shape,
                )
                object_prediction_list.append(object_prediction)
        object_prediction_list_per_image.append(object_prediction_list)
    self._object_prediction_list_per_image = object_prediction_list_per_image

7.2 Yolov5:

def _create_object_prediction_list_from_original_predictions(
    self,
    shift_amount_list: Optional[List[List[int]]] = [[0, 0]],
    full_shape_list: Optional[List[List[int]]] = None,
):
    """
    self._original_predictions is converted to a list of prediction.ObjectPrediction and set to
    self._object_prediction_list_per_image.
    Args:
        shift_amount_list: list of list
            To shift the box and mask predictions from sliced image to full sized image, should
            be in the form of List[[shift_x, shift_y],[shift_x, shift_y],...]
        full_shape_list: list of list
            Size of the full image after shifting, should be in the form of
            List[[height, width],[height, width],...]
    """
    original_predictions = self._original_predictions

    # compatilibty for sahi v0.8.15
    shift_amount_list = fix_shift_amount_list(shift_amount_list)
    full_shape_list = fix_full_shape_list(full_shape_list)

    # handle all predictions
    object_prediction_list_per_image = []
    for image_ind, image_predictions_in_xyxy_format in enumerate(original_predictions.xyxy):
        shift_amount = shift_amount_list[image_ind]
        full_shape = None if full_shape_list is None else full_shape_list[image_ind]
        object_prediction_list = []

        # process predictions
        for prediction in image_predictions_in_xyxy_format.cpu().detach().numpy():
            x1 = int(prediction[0])
            y1 = int(prediction[1])
            x2 = int(prediction[2])
            y2 = int(prediction[3])
            bbox = [x1, y1, x2, y2]
            score = prediction[4]
            category_id = int(prediction[5])
            category_name = self.category_mapping[str(category_id)]

            # fix negative box coords
            bbox[0] = max(0, bbox[0])
            bbox[1] = max(0, bbox[1])
            bbox[2] = max(0, bbox[2])
            bbox[3] = max(0, bbox[3])

            # fix out of image box coords
            if full_shape is not None:
                bbox[0] = min(full_shape[1], bbox[0])
                bbox[1] = min(full_shape[0], bbox[1])
                bbox[2] = min(full_shape[1], bbox[2])
                bbox[3] = min(full_shape[0], bbox[3])

            # ignore invalid predictions
            if not (bbox[0] < bbox[2]) or not (bbox[1] < bbox[3]):
                logger.warning(f"ignoring invalid prediction with bbox: {bbox}")
                continue

            object_prediction = ObjectPrediction(
                bbox=bbox,
                category_id=category_id,
                score=score,
                bool_mask=None,
                category_name=category_name,
                shift_amount=shift_amount,
                full_shape=full_shape,
            )
            object_prediction_list.append(object_prediction)
        object_prediction_list_per_image.append(object_prediction_list)

    self._object_prediction_list_per_image = object_prediction_list_per_image

7.3 Detectron2:

def _create_object_prediction_list_from_original_predictions(
    self,
    shift_amount_list: Optional[List[List[int]]] = [[0, 0]],
    full_shape_list: Optional[List[List[int]]] = None,
):
    """
    self._original_predictions is converted to a list of prediction.ObjectPrediction and set to
    self._object_prediction_list_per_image.
    Args:
        shift_amount_list: list of list
            To shift the box and mask predictions from sliced image to full sized image, should
            be in the form of List[[shift_x, shift_y],[shift_x, shift_y],...]
        full_shape_list: list of list
            Size of the full image after shifting, should be in the form of
            List[[height, width],[height, width],...]
    """
    original_predictions = self._original_predictions

    # compatilibty for sahi v0.8.15
    if isinstance(shift_amount_list[0], int):
        shift_amount_list = [shift_amount_list]
    if full_shape_list is not None and isinstance(full_shape_list[0], int):
        full_shape_list = [full_shape_list]

    # parse boxes, masks, scores, category_ids from predictions
    boxes = original_predictions["instances"].pred_boxes.tensor.tolist()
    scores = original_predictions["instances"].scores.tolist()
    category_ids = original_predictions["instances"].pred_classes.tolist()

    # check if predictions contain mask
    try:
        masks = original_predictions["instances"].pred_masks.tolist()
    except AttributeError:
        masks = None

    # create object_prediction_list
    object_prediction_list_per_image = []
    object_prediction_list = []

    # detectron2 DefaultPredictor supports single image
    shift_amount = shift_amount_list[0]
    full_shape = None if full_shape_list is None else full_shape_list[0]

    for ind in range(len(boxes)):
        score = scores[ind]
        if score < self.confidence_threshold:
            continue

        category_id = category_ids[ind]

        if masks is None:
            bbox = boxes[ind]
            mask = None
        else:
            mask = np.array(masks[ind])

            # check if mask is valid
            if get_bbox_from_bool_mask(mask) is not None:
                bbox = None
            else:
                continue

        object_prediction = ObjectPrediction(
            bbox=bbox,
            bool_mask=mask,
            category_id=category_id,
            category_name=self.category_mapping[str(category_id)],
            shift_amount=shift_amount,
            score=score,
            full_shape=full_shape,
        )
        object_prediction_list.append(object_prediction)

    # detectron2 DefaultPredictor supports single image
    object_prediction_list_per_image = [object_prediction_list]

    self._object_prediction_list_per_image = object_prediction_list_per_image

7.4 TorchVision: Not: TorchVision kütüphanesinin geliştirilmeye devam etmektedir.

Owner
Kadir Nar
Junior Deep Learning Engineer at @gesund-ai
Kadir Nar
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022