Bu repo SAHI uygulamasını mantığını öğreniyoruz.

Overview

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz

teaser

Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphanesine yeni bir model nasıl ekleneceğini anlattım.

Geliştiriciler için SAHI Yol Haritası

1. DetectionModel(Detection)

Class ismini oluştururkan model isminin yanına DetectionModel(Detection) yazıyoruz.

Örnekler:

1.1 Mmdet:

class MmdetDetectionModel(DetectionModel)

1.2 Yolov5:

class Yolov5DetectionModel(DetectionModel):

1.3 Detectron2:

class Detectron2DetectionModel(DetectionModel)

1.4 TorchVision:

class TorchVisionDetectionModel(DetectionModel)

2.load_model():

Bu fonksiyon 3 aşamadan oluşmaktadır.

a. Kütüphaneyi import ediyoruz. PYPI desteği olmayan kütüphanelerin kurulumunu desteklenmiyor.

b. Modele girecek resimlerin image_size değerlerini güncellemeniz gerekiyor.

c. category_mapping değişkenini {"1": "pedestrian"} bu formatta olması gerekiyor.

Örnekler:

2.1 Mmdet:

def load_model(self):
    """
    Detection model is initialized and set to self.model.
    """
    try:
        import mmdet
    except ImportError:
        raise ImportError(
            'Please run "pip install -U mmcv mmdet" ' "to install MMDetection first for MMDetection inference."
        )

    from mmdet.apis import init_detector

    # create model
    model = init_detector(
        config=self.config_path,
        checkpoint=self.model_path,
        device=self.device,
    )

    # update model image size
    if self.image_size is not None:
        model.cfg.data.test.pipeline[1]["img_scale"] = (self.image_size, self.image_size)

    # set self.model
    self.model = model

    # set category_mapping
    if not self.category_mapping:
        category_mapping = {str(ind): category_name for ind, category_name in enumerate(self.category_names)}
        self.category_mapping = category_mapping

2.2 Yolov5:

    def load_model(self):
        """
        Detection model is initialized and set to self.model.
        """
        try:
            import yolov5
        except ImportError:
            raise ImportError('Please run "pip install -U yolov5" ' "to install YOLOv5 first for YOLOv5 inference.")

        # set model
        try:
            model = yolov5.load(self.model_path, device=self.device)
            model.conf = self.confidence_threshold
            self.model = model
        except Exception as e:
            TypeError("model_path is not a valid yolov5 model path: ", e)

        # set category_mapping
        if not self.category_mapping:
            category_mapping = {str(ind): category_name for ind, category_name in enumerate(self.category_names)}
            self.category_mapping = category_mapping

2.3 Detectron2:

def load_model(self):
    try:
        import detectron2
    except ImportError:
        raise ImportError(
            "Please install detectron2. Check "
            "`https://detectron2.readthedocs.io/en/latest/tutorials/install.html` "
            "for instalattion details."
        )

    from detectron2.config import get_cfg
    from detectron2.data import MetadataCatalog
    from detectron2.engine import DefaultPredictor
    from detectron2.model_zoo import model_zoo

    cfg = get_cfg()
    cfg.MODEL.DEVICE = self.device

    try:  # try to load from model zoo
        config_file = model_zoo.get_config_file(self.config_path)
        cfg.merge_from_file(config_file)
        cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(self.config_path)
    except Exception as e:  # try to load from local
        print(e)
        if self.config_path is not None:
            cfg.merge_from_file(self.config_path)
        cfg.MODEL.WEIGHTS = self.model_path
    # set input image size
    if self.image_size is not None:
        cfg.INPUT.MIN_SIZE_TEST = self.image_size
        cfg.INPUT.MAX_SIZE_TEST = self.image_size
    # init predictor
    model = DefaultPredictor(cfg)

    self.model = model

    # detectron2 category mapping
    if self.category_mapping is None:
        try:  # try to parse category names from metadata
            metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0])
            category_names = metadata.thing_classes
            self.category_names = category_names
            self.category_mapping = {
                str(ind): category_name for ind, category_name in enumerate(self.category_names)
            }
        except Exception as e:
            logger.warning(e)
            # https://detectron2.readthedocs.io/en/latest/tutorials/datasets.html#update-the-config-for-new-datasets
            if cfg.MODEL.META_ARCHITECTURE == "RetinaNet":
                num_categories = cfg.MODEL.RETINANET.NUM_CLASSES
            else:  # fasterrcnn/maskrcnn etc
                num_categories = cfg.MODEL.ROI_HEADS.NUM_CLASSES
            self.category_names = [str(category_id) for category_id in range(num_categories)]
            self.category_mapping = {
                str(ind): category_name for ind, category_name in enumerate(self.category_names)
            }
    else:
        self.category_names = list(self.category_mapping.values())

2.4 TorchVision:

def load_model(self):
    try:
        import torchvision
    except ImportError:
        raise ImportError(
            "torchvision is not installed. Please run 'pip install -U torchvision to use this "
            "torchvision models'"
        )

    # set model
    try:
        from sahi.utils.torch import torch

        model = self.config_path
        model.load_state_dict(torch.load(self.model_path))
        model.eval()
        model = model.to(self.device)
        self.model = model
    except Exception as e:
        raise Exception(f"Failed to load model from {self.model_path}. {e}")

    # set category_mapping
    from sahi.utils.torchvision import COCO_CLASSES

    if self.category_mapping is None:
        category_names = {str(i): COCO_CLASSES[i] for i in range(len(COCO_CLASSES))}
        self.category_mapping = category_names

3.perform_inference():

Bu fonksiyonda 3 aşamada oluşmaktadır.

a. Kütüphanenin import edilmesi gerekiyor.

b. Resimlerin size değerinin güncellenmesi lazım.

c. Modelin tahmin kodlarının yazılması gerekiyor.

3.1 Mmdet:

def perform_inference(self, image: np.ndarray, image_size: int = None):
    """
    Prediction is performed using self.model and the prediction result is set to self._original_predictions.
    Args:
        image: np.ndarray
            A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
        image_size: int
            Inference input size.
    """
    try:
        import mmdet
    except ImportError:
        raise ImportError(
            'Please run "pip install -U mmcv mmdet" ' "to install MMDetection first for MMDetection inference."
        )

    # Confirm model is loaded
    assert self.model is not None, "Model is not loaded, load it by calling .load_model()"

    # Supports only batch of 1
    from mmdet.apis import inference_detector

    # update model image size
    if image_size is not None:
        warnings.warn("Set 'image_size' at DetectionModel init.", DeprecationWarning)
        self.model.cfg.data.test.pipeline[1]["img_scale"] = (image_size, image_size)

    # perform inference
    if isinstance(image, np.ndarray):
        # https://github.com/obss/sahi/issues/265
        image = image[:, :, ::-1]
    # compatibility with sahi v0.8.15
    if not isinstance(image, list):
        image = [image]
    prediction_result = inference_detector(self.model, image)

    self._original_predictions = prediction_result

3.2 Yolov5:

def perform_inference(self, image: np.ndarray, image_size: int = None):
    """
    Prediction is performed using self.model and the prediction result is set to self._original_predictions.
    Args:
        image: np.ndarray
            A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
        image_size: int
            Inference input size.
    """
    try:
        import yolov5
    except ImportError:
        raise ImportError('Please run "pip install -U yolov5" ' "to install YOLOv5 first for YOLOv5 inference.")

    # Confirm model is loaded
    assert self.model is not None, "Model is not loaded, load it by calling .load_model()"

    if image_size is not None:
        warnings.warn("Set 'image_size' at DetectionModel init.", DeprecationWarning)
        prediction_result = self.model(image, size=image_size)
    elif self.image_size is not None:
        prediction_result = self.model(image, size=self.image_size)
    else:
        prediction_result = self.model(image)

    self._original_predictions = prediction_result

3.3 Detectron2:

def perform_inference(self, image: np.ndarray, image_size: int = None):
    """
    Prediction is performed using self.model and the prediction result is set to self._original_predictions.
    Args:
        image: np.ndarray
            A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
    """
    try:
        import detectron2
    except ImportError:
        raise ImportError("Please install detectron2 via `pip install detectron2`")

    # confirm image_size is not provided
    if image_size is not None:
        warnings.warn("Set 'image_size' at DetectionModel init.")

    # Confirm model is loaded
    if self.model is None:
        raise RuntimeError("Model is not loaded, load it by calling .load_model()")

    if isinstance(image, np.ndarray) and self.model.input_format == "BGR":
        # convert RGB image to BGR format
        image = image[:, :, ::-1]

    prediction_result = self.model(image)

    self._original_predictions = prediction_result

3.4 TorchVision:

def perform_inference(self, image: np.ndarray, image_size: int = None):
    """
    Prediction is performed using self.model and the prediction result is set to self._original_predictions.
    Args:
        image: np.ndarray
            A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
        image_size: int
            Inference input size.
    """
    if self.model is None:
        raise ValueError("model not loaded.")

    from sahi.utils.torchvision import numpy_to_torch, resize_image

    if self.image_size is not None:
        image = resize_image(image, self.image_size)
        image = numpy_to_torch(image)
        prediction_result = self.model([image])

    else:
        prediction_result = self.model([image])

    self._original_predictions = prediction_result

4.num_categories():

Bu fonksiyonda tahmin edilen kategorilerin sayısını döndürmesi isteniyor.

4.1 Mmdet:

def num_categories(self):
    """
    Returns number of categories
    """
    if isinstance(self.model.CLASSES, str):
        num_categories = 1
    else:
        num_categories = len(self.model.CLASSES)
    return num_categories

4.2 Yolov5:

def num_categories(self):
    """
    Returns number of categories
    """
    return len(self.model.names)

4.3 Detectron2:

def num_categories(self):
    """
    Returns number of categories
    """
    num_categories = len(self.category_mapping)
    return num_categories

4.4 TorchVision:

def num_categories(self):
    """
    Returns number of categories
    """
    return len(self.category_mapping)

5.has_mask():

Bu fonksiyonda tahmin edilen kategorilerin maskleri olup olmadığını döndürmesi isteniyor.

5.1 Mmdet:

def has_mask(self):
    """
    Returns if model output contains segmentation mask
    """
    has_mask = self.model.with_mask
    return has_mask```
5.2 Yolov5:

5.2 Yolov5:

def has_mask(self):
    """
    Returns if model output contains segmentation mask
    """
    has_mask = self.model.with_mask
    return has_mask

5.3 Detectron2:

if get_bbox_from_bool_mask(mask) is not None:
    bbox = None
else:
    continue

5.4 TorchVision:

def has_mask(self):
    """
    Returns if model output contains segmentation mask
    """
    return self.model.with_mask

6.category_names():

Bu fonksiyonda tahmin edilen kategorilerin isimlerini döndürmesi isteniyor.

6.1 Mmdet:

def category_names(self):
    if type(self.model.CLASSES) == str:
        # https://github.com/open-mmlab/mmdetection/pull/4973
        return (self.model.CLASSES,)
    else:
        return self.model.CLASSES

6.2 Yolov5:

def category_names(self):
    return self.model.names

6.3 Detectron2:

# detectron2 category mapping
if self.category_mapping is None:
    try:  # try to parse category names from metadata
        metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0])
        category_names = metadata.thing_classes
        self.category_names = category_names

6.4 TorchVision:

def category_names(self):
    return self.category_mapping

7._create_object_prediction_list_from_original_predictions():

Bu fonksiyon da bir şablon üzerinden kodlama yapmanız sizin için daha rahat olacaktır. Fonksiyonunu altına direk bunu yazabilirsiniz.

original_predictions = self._original_predictions

# compatilibty for sahi v0.8.15
if isinstance(shift_amount_list[0], int):
    shift_amount_list = [shift_amount_list]
if full_shape_list is not None and isinstance(full_shape_list[0], int):
    full_shape_list = [full_shape_list]

Bundan sonra modeliniz tahminleme yaptıktan sonra bbox,mask,category_id, category_name ve score değerleri döndürmesi isteniyor. Bu değerleri object_prediction değişkeninin içindeki none değerleri yerine yazmanız gerekiyor. Aşağıdaki şablon yapısını da bozmamanız istenmektedir.

    object_prediction = ObjectPrediction(
        bbox=None,
        bool_mask=None,
        category_id=None,
        category_name=sNone,
        shift_amount=shift_amount,
        score=None,
        full_shape=full_shape,
    )
    object_prediction_list.append(object_prediction)

# detectron2 DefaultPredictor supports single image
object_prediction_list_per_image = [object_prediction_list]

self._object_prediction_list_per_image = object_prediction_list_per_image

7.1 Mmdet:

def _create_object_prediction_list_from_original_predictions(
    self,
    shift_amount_list: Optional[List[List[int]]] = [[0, 0]],
    full_shape_list: Optional[List[List[int]]] = None,
):
    """
    self._original_predictions is converted to a list of prediction.ObjectPrediction and set to
    self._object_prediction_list_per_image.
    Args:
        shift_amount_list: list of list
            To shift the box and mask predictions from sliced image to full sized image, should
            be in the form of List[[shift_x, shift_y],[shift_x, shift_y],...]
        full_shape_list: list of list
            Size of the full image after shifting, should be in the form of
            List[[height, width],[height, width],...]
    """
    original_predictions = self._original_predictions
    category_mapping = self.category_mapping

    # compatilibty for sahi v0.8.15
    shift_amount_list = fix_shift_amount_list(shift_amount_list)
    full_shape_list = fix_full_shape_list(full_shape_list)

    # parse boxes and masks from predictions
    num_categories = self.num_categories
    object_prediction_list_per_image = []
    for image_ind, original_prediction in enumerate(original_predictions):
        shift_amount = shift_amount_list[image_ind]
        full_shape = None if full_shape_list is None else full_shape_list[image_ind]

        if self.has_mask:
            boxes = original_prediction[0]
            masks = original_prediction[1]
        else:
            boxes = original_prediction

        object_prediction_list = []

        # process predictions
        for category_id in range(num_categories):
            category_boxes = boxes[category_id]
            if self.has_mask:
                category_masks = masks[category_id]
            num_category_predictions = len(category_boxes)

            for category_predictions_ind in range(num_category_predictions):
                bbox = category_boxes[category_predictions_ind][:4]
                score = category_boxes[category_predictions_ind][4]
                category_name = category_mapping[str(category_id)]

                # ignore low scored predictions
                if score < self.confidence_threshold:
                    continue

                # parse prediction mask
                if self.has_mask:
                    bool_mask = category_masks[category_predictions_ind]
                else:
                    bool_mask = None

                # fix negative box coords
                bbox[0] = max(0, bbox[0])
                bbox[1] = max(0, bbox[1])
                bbox[2] = max(0, bbox[2])
                bbox[3] = max(0, bbox[3])

                # fix out of image box coords
                if full_shape is not None:
                    bbox[0] = min(full_shape[1], bbox[0])
                    bbox[1] = min(full_shape[0], bbox[1])
                    bbox[2] = min(full_shape[1], bbox[2])
                    bbox[3] = min(full_shape[0], bbox[3])

                # ignore invalid predictions
                if not (bbox[0] < bbox[2]) or not (bbox[1] < bbox[3]):
                    logger.warning(f"ignoring invalid prediction with bbox: {bbox}")
                    continue

                object_prediction = ObjectPrediction(
                    bbox=bbox,
                    category_id=category_id,
                    score=score,
                    bool_mask=bool_mask,
                    category_name=category_name,
                    shift_amount=shift_amount,
                    full_shape=full_shape,
                )
                object_prediction_list.append(object_prediction)
        object_prediction_list_per_image.append(object_prediction_list)
    self._object_prediction_list_per_image = object_prediction_list_per_image

7.2 Yolov5:

def _create_object_prediction_list_from_original_predictions(
    self,
    shift_amount_list: Optional[List[List[int]]] = [[0, 0]],
    full_shape_list: Optional[List[List[int]]] = None,
):
    """
    self._original_predictions is converted to a list of prediction.ObjectPrediction and set to
    self._object_prediction_list_per_image.
    Args:
        shift_amount_list: list of list
            To shift the box and mask predictions from sliced image to full sized image, should
            be in the form of List[[shift_x, shift_y],[shift_x, shift_y],...]
        full_shape_list: list of list
            Size of the full image after shifting, should be in the form of
            List[[height, width],[height, width],...]
    """
    original_predictions = self._original_predictions

    # compatilibty for sahi v0.8.15
    shift_amount_list = fix_shift_amount_list(shift_amount_list)
    full_shape_list = fix_full_shape_list(full_shape_list)

    # handle all predictions
    object_prediction_list_per_image = []
    for image_ind, image_predictions_in_xyxy_format in enumerate(original_predictions.xyxy):
        shift_amount = shift_amount_list[image_ind]
        full_shape = None if full_shape_list is None else full_shape_list[image_ind]
        object_prediction_list = []

        # process predictions
        for prediction in image_predictions_in_xyxy_format.cpu().detach().numpy():
            x1 = int(prediction[0])
            y1 = int(prediction[1])
            x2 = int(prediction[2])
            y2 = int(prediction[3])
            bbox = [x1, y1, x2, y2]
            score = prediction[4]
            category_id = int(prediction[5])
            category_name = self.category_mapping[str(category_id)]

            # fix negative box coords
            bbox[0] = max(0, bbox[0])
            bbox[1] = max(0, bbox[1])
            bbox[2] = max(0, bbox[2])
            bbox[3] = max(0, bbox[3])

            # fix out of image box coords
            if full_shape is not None:
                bbox[0] = min(full_shape[1], bbox[0])
                bbox[1] = min(full_shape[0], bbox[1])
                bbox[2] = min(full_shape[1], bbox[2])
                bbox[3] = min(full_shape[0], bbox[3])

            # ignore invalid predictions
            if not (bbox[0] < bbox[2]) or not (bbox[1] < bbox[3]):
                logger.warning(f"ignoring invalid prediction with bbox: {bbox}")
                continue

            object_prediction = ObjectPrediction(
                bbox=bbox,
                category_id=category_id,
                score=score,
                bool_mask=None,
                category_name=category_name,
                shift_amount=shift_amount,
                full_shape=full_shape,
            )
            object_prediction_list.append(object_prediction)
        object_prediction_list_per_image.append(object_prediction_list)

    self._object_prediction_list_per_image = object_prediction_list_per_image

7.3 Detectron2:

def _create_object_prediction_list_from_original_predictions(
    self,
    shift_amount_list: Optional[List[List[int]]] = [[0, 0]],
    full_shape_list: Optional[List[List[int]]] = None,
):
    """
    self._original_predictions is converted to a list of prediction.ObjectPrediction and set to
    self._object_prediction_list_per_image.
    Args:
        shift_amount_list: list of list
            To shift the box and mask predictions from sliced image to full sized image, should
            be in the form of List[[shift_x, shift_y],[shift_x, shift_y],...]
        full_shape_list: list of list
            Size of the full image after shifting, should be in the form of
            List[[height, width],[height, width],...]
    """
    original_predictions = self._original_predictions

    # compatilibty for sahi v0.8.15
    if isinstance(shift_amount_list[0], int):
        shift_amount_list = [shift_amount_list]
    if full_shape_list is not None and isinstance(full_shape_list[0], int):
        full_shape_list = [full_shape_list]

    # parse boxes, masks, scores, category_ids from predictions
    boxes = original_predictions["instances"].pred_boxes.tensor.tolist()
    scores = original_predictions["instances"].scores.tolist()
    category_ids = original_predictions["instances"].pred_classes.tolist()

    # check if predictions contain mask
    try:
        masks = original_predictions["instances"].pred_masks.tolist()
    except AttributeError:
        masks = None

    # create object_prediction_list
    object_prediction_list_per_image = []
    object_prediction_list = []

    # detectron2 DefaultPredictor supports single image
    shift_amount = shift_amount_list[0]
    full_shape = None if full_shape_list is None else full_shape_list[0]

    for ind in range(len(boxes)):
        score = scores[ind]
        if score < self.confidence_threshold:
            continue

        category_id = category_ids[ind]

        if masks is None:
            bbox = boxes[ind]
            mask = None
        else:
            mask = np.array(masks[ind])

            # check if mask is valid
            if get_bbox_from_bool_mask(mask) is not None:
                bbox = None
            else:
                continue

        object_prediction = ObjectPrediction(
            bbox=bbox,
            bool_mask=mask,
            category_id=category_id,
            category_name=self.category_mapping[str(category_id)],
            shift_amount=shift_amount,
            score=score,
            full_shape=full_shape,
        )
        object_prediction_list.append(object_prediction)

    # detectron2 DefaultPredictor supports single image
    object_prediction_list_per_image = [object_prediction_list]

    self._object_prediction_list_per_image = object_prediction_list_per_image

7.4 TorchVision: Not: TorchVision kütüphanesinin geliştirilmeye devam etmektedir.

Owner
Kadir Nar
Junior Deep Learning Engineer at @gesund-ai
Kadir Nar
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022