Deep motion transfer

Overview

animation-with-keypoint-mask

Paper

The right most square is the final result. Softmax mask (circles):


\

Heatmap mask:



\

conda env create -f environment.yml
conda activate venv11
We use pytorch 1.7.1 with python 3.8.
Please obtain pretrained keypoint module. You can do so by
git checkout fomm-new-torch
Then, follow the instructions from the README of that branch, or obtain a pre-trained checkpoint from
https://github.com/AliaksandrSiarohin/first-order-model

training

to train a model on specific dataset run:

CUDA_VISIBLE_DEVICES=0,1,2,3 python run.py --config config/dataset_name.yaml --device_ids 0,1,2,3 --checkpoint_with_kp path/to/checkpoint/with/pretrained/kp

E.g. taichi-256-q.yaml for the keypoint heatmap mask model, and taichi-256-softmax-q.yaml for drawn circular keypoints instead.

the code will create a folder in the log directory (each run will create a time-stamped new directory). checkpoints will be saved to this folder. to check the loss values during training see log.txt. you can also check training data reconstructions in the train-vis sub-folder. by default the batch size is tuned to run on 4 titan-x gpu (apart from speed it does not make much difference). You can change the batch size in the train_params in corresponding .yaml file.

evaluation on video reconstruction

To evaluate the reconstruction of the driving video from its first frame, run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode reconstruction --checkpoint path/to/checkpoint --checkpoint_with_kp path/to/checkpoint/with/pretrained/kp

you will need to specify the path to the checkpoint, the reconstruction sub-folder will be created in the checkpoint folder. the generated video will be stored to this folder, also generated videos will be stored in png subfolder in loss-less '.png' format for evaluation. instructions for computing metrics from the paper can be found: https://github.com/aliaksandrsiarohin/pose-evaluation.

image animation

In order to animate a source image with motion from driving, run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode animate --checkpoint path/to/checkpoint --checkpoint_with_kp path/to/checkpoint/with/pretrained/kp

you will need to specify the path to the checkpoint, the animation sub-folder will be created in the same folder as the checkpoint. you can find the generated video there and its loss-less version in the png sub-folder. by default video from test set will be randomly paired, but you can specify the "source,driving" pairs in the corresponding .csv files. the path to this file should be specified in corresponding .yaml file in pairs_list setting.

datasets

  1. taichi. follow the instructions in data/taichi-loading or instructions from https://github.com/aliaksandrsiarohin/video-preprocessing.

training on your own dataset

  1. resize all the videos to the same size e.g 256x256, the videos can be in '.gif', '.mp4' or folder with images. we recommend the later, for each video make a separate folder with all the frames in '.png' format. this format is loss-less, and it has better i/o performance.

  2. create a folder data/dataset_name with 2 sub-folders train and test, put training videos in the train and testing in the test.

  3. create a config config/dataset_name.yaml, in dataset_params specify the root dir the root_dir: data/dataset_name. also adjust the number of epoch in train_params.

additional notes

citation:

@misc{toledano2021,
  author = {Or Toledano and Yanir Marmor and Dov Gertz},
  title = {Image Animation with Keypoint Mask},
  year = {2021},
  eprint={2112.10457},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Old format (before paper):

@misc{toledano2021,
  author = {Or Toledano and Yanir Marmor and Dov Gertz},
  title = {Image Animation with Keypoint Mask},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/or-toledano/animation-with-keypoint-mask}},
  commit = {015b1f2d466658141c41ea67d7356790b5cded40}
}
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
To SMOTE, or not to SMOTE?

To SMOTE, or not to SMOTE? This package includes the code required to repeat the experiments in the paper and to analyze the results. To SMOTE, or not

Amazon Web Services 1 Jan 03, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022