PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Related tags

Deep Learningxcit
Overview

Cross-Covariance Image Transformer (XCiT)

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Linear complexity in time and memory

Our XCiT models has a linear complexity w.r.t number of patches/tokens:

Peak Memory (inference) Millisecond/Image (Inference)

Scaling to high resolution inputs

XCiT can scale to high resolution inputs both due to cheaper compute requirement as well as better adaptability to higher resolution at test time (see Figure 3 in the paper)

Detection and Instance Segmentation for Ultra high resolution images (6000x4000)

Detection and Instance segmentation result for an ultra high resolution image 6000x4000 )

XCiT+DINO: High Res. Self-Attention Visualization 🦖

Our XCiT models with self-supervised training using DINO can obtain high resolution attention maps.

xcit_dino.mp4

Self-Attention visualization per head

Below we show the attention maps for each of the 8 heads separately and we can observe that every head specializes in different semantic aspects of the scene for the foreground as well as the background.

Multi_head.mp4

Getting Started

First, clone the repo

git clone https://github.com/facebookresearch/XCiT.git

Then, you can install the required packages including: Pytorch version 1.7.1, torchvision version 0.8.2 and Timm version 0.4.8

pip install -r requirements.txt

Download and extract the ImageNet dataset. Afterwards, set the --data-path argument to the corresponding extracted ImageNet path.

For full details about all the available arguments, you can use

python main.py --help

For detection and segmentation downstream tasks, please check:


Model Zoo

We provide XCiT models pre-trained weights on ImageNet-1k.

§: distillation

Models with 16x16 patch size

Arch params Model
224 224 § 384 §
top-1 weights top-1 weights top-1 weights
xcit_nano_12_p16 3M 69.9% download 72.2% download 75.4% download
xcit_tiny_12_p16 7M 77.1% download 78.6% download 80.9% download
xcit_tiny_24_p16 12M 79.4% download 80.4% download 82.6% download
xcit_small_12_p16 26M 82.0% download 83.3% download 84.7% download
xcit_small_24_p16 48M 82.6% download 83.9% download 85.1% download
xcit_medium_24_p16 84M 82.7% download 84.3% download 85.4% download
xcit_large_24_p16 189M 82.9% download 84.9% download 85.8% download

Models with 8x8 patch size

Arch params Model
224 224 § 384 §
top-1 weights top-1 weights top-1 weights
xcit_nano_12_p8 3M 73.8% download 76.3% download 77.8% download
xcit_tiny_12_p8 7M 79.7% download 81.2% download 82.4% download
xcit_tiny_24_p8 12M 81.9% download 82.6% download 83.7% download
xcit_small_12_p8 26M 83.4% download 84.2% download 85.1% download
xcit_small_24_p8 48M 83.9% download 84.9% download 85.6% download
xcit_medium_24_p8 84M 83.7% download 85.1% download 85.8% download
xcit_large_24_p8 189M 84.4% download 85.4% download 86.0% download

XCiT + DINO Self-supervised models

Arch params k-nn linear download
xcit_small_12_p16 26M 76.0% 77.8% backbone
xcit_small_12_p8 26M 77.1% 79.2% backbone
xcit_medium_24_p16 84M 76.4% 78.8% backbone
xcit_medium_24_p8 84M 77.9% 80.3% backbone

Training

For training using a single node, use the following command

python -m torch.distributed.launch --nproc_per_node=[NUM_GPUS] --use_env main.py --model [MODEL_KEY] --batch-size [BATCH_SIZE] --drop-path [STOCHASTIC_DEPTH_RATIO] --output_dir [OUTPUT_PATH]

For example, the XCiT-S12/16 model can be trained using the following command

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model xcit_small_12_p16 --batch-size 128 --drop-path 0.05 --output_dir /experiments/xcit_small_12_p16/ --epochs [NUM_EPOCHS]

For multinode training via SLURM you can alternatively use

python run_with_submitit.py --partition [PARTITION_NAME] --nodes 2 --ngpus 8 --model xcit_small_12_p16 --batch-size 64 --drop-path 0.05 --job_dir /experiments/xcit_small_12_p16/ --epochs 400

More details for the hyper-parameters used to train the different models can be found in Table B.1 in the paper.

Evaluation

To evaluate an XCiT model using the checkpoints above or models you trained use the following command:

python main.py --eval --model  --input-size  [--full_crop] --pretrained 

By default we use the --full_crop flag which evaluates the model with a crop ratio of 1.0 instead of 0.875 following CaiT.

For example, the command to evaluate the XCiT-S12/16 using 224x224 images:

python main.py --eval --model xcit_small_12_p16 --input-size 384 --full_crop --pretrained https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224.pth

Acknowledgement

This repository is built using the Timm library and the DeiT repository. The self-supervised training is based on the DINO repository.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Contributing

We actively welcome your pull requests! Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

Citation

If you find this repository useful, please consider citing our work:

@misc{elnouby2021xcit,
      title={XCiT: Cross-Covariance Image Transformers}, 
      author={Alaaeldin El-Nouby and Hugo Touvron and Mathilde Caron and Piotr Bojanowski and Matthijs Douze and Armand Joulin and Ivan Laptev and Natalia Neverova and Gabriel Synnaeve and Jakob Verbeek and Hervé Jegou},
      year={2021},
      journal={arXiv preprint arXiv:2106.09681},
}
Owner
Facebook Research
Facebook Research
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022