PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Related tags

Deep Learningxcit
Overview

Cross-Covariance Image Transformer (XCiT)

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Linear complexity in time and memory

Our XCiT models has a linear complexity w.r.t number of patches/tokens:

Peak Memory (inference) Millisecond/Image (Inference)

Scaling to high resolution inputs

XCiT can scale to high resolution inputs both due to cheaper compute requirement as well as better adaptability to higher resolution at test time (see Figure 3 in the paper)

Detection and Instance Segmentation for Ultra high resolution images (6000x4000)

Detection and Instance segmentation result for an ultra high resolution image 6000x4000 )

XCiT+DINO: High Res. Self-Attention Visualization 🦖

Our XCiT models with self-supervised training using DINO can obtain high resolution attention maps.

xcit_dino.mp4

Self-Attention visualization per head

Below we show the attention maps for each of the 8 heads separately and we can observe that every head specializes in different semantic aspects of the scene for the foreground as well as the background.

Multi_head.mp4

Getting Started

First, clone the repo

git clone https://github.com/facebookresearch/XCiT.git

Then, you can install the required packages including: Pytorch version 1.7.1, torchvision version 0.8.2 and Timm version 0.4.8

pip install -r requirements.txt

Download and extract the ImageNet dataset. Afterwards, set the --data-path argument to the corresponding extracted ImageNet path.

For full details about all the available arguments, you can use

python main.py --help

For detection and segmentation downstream tasks, please check:


Model Zoo

We provide XCiT models pre-trained weights on ImageNet-1k.

§: distillation

Models with 16x16 patch size

Arch params Model
224 224 § 384 §
top-1 weights top-1 weights top-1 weights
xcit_nano_12_p16 3M 69.9% download 72.2% download 75.4% download
xcit_tiny_12_p16 7M 77.1% download 78.6% download 80.9% download
xcit_tiny_24_p16 12M 79.4% download 80.4% download 82.6% download
xcit_small_12_p16 26M 82.0% download 83.3% download 84.7% download
xcit_small_24_p16 48M 82.6% download 83.9% download 85.1% download
xcit_medium_24_p16 84M 82.7% download 84.3% download 85.4% download
xcit_large_24_p16 189M 82.9% download 84.9% download 85.8% download

Models with 8x8 patch size

Arch params Model
224 224 § 384 §
top-1 weights top-1 weights top-1 weights
xcit_nano_12_p8 3M 73.8% download 76.3% download 77.8% download
xcit_tiny_12_p8 7M 79.7% download 81.2% download 82.4% download
xcit_tiny_24_p8 12M 81.9% download 82.6% download 83.7% download
xcit_small_12_p8 26M 83.4% download 84.2% download 85.1% download
xcit_small_24_p8 48M 83.9% download 84.9% download 85.6% download
xcit_medium_24_p8 84M 83.7% download 85.1% download 85.8% download
xcit_large_24_p8 189M 84.4% download 85.4% download 86.0% download

XCiT + DINO Self-supervised models

Arch params k-nn linear download
xcit_small_12_p16 26M 76.0% 77.8% backbone
xcit_small_12_p8 26M 77.1% 79.2% backbone
xcit_medium_24_p16 84M 76.4% 78.8% backbone
xcit_medium_24_p8 84M 77.9% 80.3% backbone

Training

For training using a single node, use the following command

python -m torch.distributed.launch --nproc_per_node=[NUM_GPUS] --use_env main.py --model [MODEL_KEY] --batch-size [BATCH_SIZE] --drop-path [STOCHASTIC_DEPTH_RATIO] --output_dir [OUTPUT_PATH]

For example, the XCiT-S12/16 model can be trained using the following command

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model xcit_small_12_p16 --batch-size 128 --drop-path 0.05 --output_dir /experiments/xcit_small_12_p16/ --epochs [NUM_EPOCHS]

For multinode training via SLURM you can alternatively use

python run_with_submitit.py --partition [PARTITION_NAME] --nodes 2 --ngpus 8 --model xcit_small_12_p16 --batch-size 64 --drop-path 0.05 --job_dir /experiments/xcit_small_12_p16/ --epochs 400

More details for the hyper-parameters used to train the different models can be found in Table B.1 in the paper.

Evaluation

To evaluate an XCiT model using the checkpoints above or models you trained use the following command:

python main.py --eval --model  --input-size  [--full_crop] --pretrained 

By default we use the --full_crop flag which evaluates the model with a crop ratio of 1.0 instead of 0.875 following CaiT.

For example, the command to evaluate the XCiT-S12/16 using 224x224 images:

python main.py --eval --model xcit_small_12_p16 --input-size 384 --full_crop --pretrained https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224.pth

Acknowledgement

This repository is built using the Timm library and the DeiT repository. The self-supervised training is based on the DINO repository.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Contributing

We actively welcome your pull requests! Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

Citation

If you find this repository useful, please consider citing our work:

@misc{elnouby2021xcit,
      title={XCiT: Cross-Covariance Image Transformers}, 
      author={Alaaeldin El-Nouby and Hugo Touvron and Mathilde Caron and Piotr Bojanowski and Matthijs Douze and Armand Joulin and Ivan Laptev and Natalia Neverova and Gabriel Synnaeve and Jakob Verbeek and Hervé Jegou},
      year={2021},
      journal={arXiv preprint arXiv:2106.09681},
}
Owner
Facebook Research
Facebook Research
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022