level1-image-classification-level1-recsys-09 created by GitHub Classroom

Overview

level1-image-classification-level1-recsys-09

주제 설명

  • COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축
  • 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델

👋 팀원 소개

김혜지 이아현 김동우 김은선 김연요
Avatar Avatar Avatar Avatar Avatar

🔨 Installation

  • torch == 1.6.0
  • torchvision == 0.7.0
  • tensorboard == 2.4.1
  • pandas == 1.1.5
  • opencv-python == 4.5.1.48
  • scikit-learn ~= 0.24.1
  • matplotlib == 3.2.1
  • efficientnet_pytorch
$ pip install -r $ROOT/level1-image-classification-level1-recsys-09/requirements.txt

Function Description

model.py: EfficientNet-b4와 GoogLeNet을 Ensemble하여 모델링

dataset.py: data augmentation, labeling 등 model training에 사용되는 dataset 생성

loss.py: cross entropy, f1 score, arcface를 이용해 loss 값을 계산

train.py: model을 사용자가 지정한 parameter에 따라 실행하여 training

🏢 Structure

level1-image-classification-level1-recsys-09
│
├── README.md
├── requirements.txt
├── EDA
│   ├── data_EDA.ipynb
│   ├── image_EDA.ipynb
│   └── torchvision_transforms.ipynb
└── python
    ├── dataset.py
    ├── loss.py
    ├── model.py
    └── train.py

⚙️ Training 명령어

python train.py --model 'Ensemble' --TTA True --name 'final model' --epoch 3

image

🖼️ 실행 결과

모델명 F1-Score Accuracy 최종 순위
EfficientNet-b4 + GoogLeNet 0.7269 77.3016 private 35등

📜 참고자료

EfficientNet-PyTorch

GoogLeNet

DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022