A pytorch-based real-time segmentation model for autonomous driving

Overview

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation

This project contains the Pytorch implementation for the proposed CFPNet: paper

Result
Result
Real-time semantic segmentation is playing a more important role in computer vision, due to the growing demand for mobile devices and autonomous driving. Therefore, it is very important to achieve a good trade-off among performance, model size and inference speed. In this paper, we propose a Channel-wise Feature Pyramid (CFP) module to balance those factors. Based on the CFP module, we built CFPNet for real-time semantic segmentation which applied a series of dilated convolution channels to extract effective features. Experiments on Cityscapes and CamVid datasets show that the proposed CFPNet achieves an effective combination of those factors. For the Cityscapes test dataset, CFPNet achievse 70.1% class-wise mIoU with only 0.55 million parameters and 2.5 MB memory. The inference speed can reach 30 FPS on a single RTX 2080Ti GPU (GPU usage 60%) with a 1024×2048-pixel image.

Installation

  • Enviroment: Python 3.6; Pytorch 1.0; CUDA 9.0; cuDNN V7
  • Install some packages:
pip install opencv-python pillow numpy matplotlib
  • Clone this repository
git clone https://github.com/AngeLouCN/CFPNet
  • One GPU with 11GB memory is needed

Dataset

You need to download the two dataset——CamVid and Cityscapes, and put the files in the datasetfolder with following structure.

|—— camvid
|    ├── train
|    ├── test
|    ├── val 
|    ├── trainannot
|    ├── testannot
|    ├── valannot
|    ├── camvid_trainval_list.txt
|    ├── camvid_train_list.txt
|    ├── camvid_test_list.txt
|    └── camvid_val_list.txt
├── cityscapes
|    ├── gtCoarse
|    ├── gtFine
|    ├── leftImg8bit
|    ├── cityscapes_trainval_list.txt
|    ├── cityscapes_train_list.txt
|    ├── cityscapes_test_list.txt
|    └── cityscapes_val_list.txt  

Training

  • You can run: python train.py -hto check the detail of optional arguments. In the train.py, you can set the dataset, train type, epochs and batch size, etc.
  • training on Cityscapes train set.
python train.py --dataset cityscapes
  • training on Camvid train and val set.
python train.py --dataset camvid --train_type trainval --max_epochs 1000 --lr 1e-3 --batch_size 16
  • During training course, every 50 epochs, we will record the mean IoU of train set, validation set and training loss to draw a plot, so you can check whether the training process is normal.
Val mIoU vs Epochs Train loss vs Epochs
Result
Result

Testing

  • After training, the checkpoint will be saved at checkpointfolder, you can use test.pyto predict the result.
python test.py --dataset ${camvid, cityscapes} --checkpoint ${CHECKPOINT_FILE}

Evalution

  • For those dataset that do not provide label on the test set (e.g. Cityscapes), you can use predict.py to save all the output images, then submit to official webpage for evaluation.
python test.py --dataset ${camvid, cityscapes} --checkpoint ${CHECKPOINT_FILE}

Inference Speed

  • You can run the eval_fps.py to test the model inference speed, input the image size such as 1024,2048.
python eval_fps.py 1024,2048

Results

  • Results for CFPNet-V1, CFPNet-V2 and CFPNet-v3:
Dataset Model mIoU
Cityscapes CFPNet-V1 60.4%
Cityscapes CFPNet-V2 66.5%
Cityscapes CFPNet-V3 70.1%
  • Sample results: (from top to bottom is Original, CFPNet-V1, CFPNet-V2 and CFPNet-v3)
Result
Category_acc vs size Class_acc vs size
Result
Result
Class_acc vs parameter Class_acc vs speed
Result
Result

Comparsion

  • Results of Cityscapes
Result
  • Results of CamVid
Result

Citation

If you think our work is helpful, please consider to cite:

@article{lou2021cfpnet,
  title={CFPNet: Channel-wise Feature Pyramid for Real-Time Semantic Segmentation},
  author={Lou, Ange and Loew, Murray},
  journal={arXiv preprint arXiv:2103.12212},
  year={2021}
}
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022