Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

Related tags

Deep LearningGMR
Overview

GMR(Camera Motion Agnostic 3D Human Pose Estimation)

This repo provides the source code of our arXiv paper:
Seong Hyun Kim, Sunwon Jeong, Sungbum Park, and Ju Yong Chang, "Camera motion agnostic 3D human pose estimation," arXiv preprint arXiv:2112.00343, 2021.

Environment

  • Python : 3.6
  • Ubuntu : 18.04
  • CUDA : 11.1
  • cudnn : 8.0.5
  • torch : 1.7.1
  • torchvision : 0.8.2
  • GPU : one Nvidia RTX3090

Installation

  • First, you need to install python and other packages.

    pip install -r requirements.txt
  • Then, you need to install torch and torchvision. We tested our code on torch1.7.1 and torchvision0.8.2. But our code can also work with torch version >= 1.5.0.

Quick Demo

  • Download pretrained GMR model from [pretrained GMR] and make them look like this:

    ${GMR_ROOT}
     |-- results
         |-- GMR
             |-- final_model.pth
    
  • Download other model files from [other model files] and make them look like this:

    ${GMR_ROOT}
     |-- data
         |-- gmr_data
             |-- J_regressor_extra.npy
             |-- J_regressor_h36m.npy
             |-- SMPL_NEUTRAL.pkl
             |-- gmm_08.pkl
             |-- smpl_mean_params.npz
             |-- spin_model_checkpoint.pth.tar
             |-- vibe_model_w_3dpw.pth.tar
             |-- vibe_model_wo_3dpw.pth.tar
    
  • Finally, download demo videos from [demo videos] and make them look like this:

    ${GMR_ROOT}
    |-- configs
    |-- data
    |-- lib
    |-- results
    |-- scripts
    |-- demo.py
    |-- eval_3dpw.py
    |-- eval_synthetic.py
    |-- DEMO_VIDEO1.mp4
    |-- DEMO_VIDEO2.mp4
    |-- DEMO_VIDEO3.mp4
    |-- DEMO_VIDEO4.mp4
    |-- README.md
    |-- requirements.txt
    |-- run_eval_3dpw.sh
    |-- run_eval_synthetic.sh
    |-- run_train.sh
    |-- train.py
    

Demo code consists of (bounding box tracking) - (VIBE) - (GMR)

python demo.py --vid_file DEMO_VIDEO1.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO2.mp4 --vid_type mp4 --vid_fps 30 --view_type front_large --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO3.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO4.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

Data

You need to follow directory structure of the data as below.

${GMR_ROOT}
  |-- data
    |-- amass
      |-- ACCAD
      |-- BioMotionLab_NTroje
      |-- CMU
      |-- EKUT
      |-- Eyes_Japan_Dataset
      |-- HumanEva
      |-- KIT
      |-- MPI_HDM05
      |-- MPI_Limits
      |-- MPI_mosh
      |-- SFU
      |-- SSM_synced
      |-- TCD_handMocap
      |-- TotalCapture
      |-- Transitions_mocap
    |-- gmr_data
      |-- J_regressor_extra.npy
      |-- J_regressor_h36m.npy
      |-- SMPL_NEUTRAL.pkl
      |-- gmm_08.pkl
      |-- smpl_mean_params.npz
      |-- spin_model_checkpoint.pth.tar
      |-- vibe_model_w_3dpw.pth.tar
      |-- vibe_model_wo_3dpw.pth.tar
    |-- gmr_db
      |-- amass_train_db.pt
      |-- h36m_dsd_val_db.pt
      |-- 3dpw_test_db.pt
      |-- synthetic_camera_motion_off.pt
      |-- synthetic_camera_motion_on.pt
  • Download AMASS dataset from this link and place them in data/amass. Then, you can obtain the training data through the following command. Also, you can download the training data from this link.
    source scripts/prepare_training_data.sh
    
  • Download processed 3DPW data [data]
  • Download processed Human3.6 data [data]
  • Download synthetic dataset [data]

Train

Run the commands below to start training:

./run_train.sh

Evaluation

Run the commands below to start evaluation:

# Evaluation on 3DPW dataset
./run_eval_3dpw.sh

# Evaluation on synthetic dataset
./run_eval_synthetic.sh

References

We borrowed some scripts and models externally. Thanks to the authors for providing great resources.

  • Pretrained VIBE and most of functions are borrowed from VIBE.
  • Pretrained SPIN is borrowed from SPIN.
  • SMPL model files are borrowed from SPIN and SMPLify.
Owner
Seong Hyun Kim
M.S. student in CVLAB, Kwang Woon University
Seong Hyun Kim
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022