Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

Related tags

Deep LearningGMR
Overview

GMR(Camera Motion Agnostic 3D Human Pose Estimation)

This repo provides the source code of our arXiv paper:
Seong Hyun Kim, Sunwon Jeong, Sungbum Park, and Ju Yong Chang, "Camera motion agnostic 3D human pose estimation," arXiv preprint arXiv:2112.00343, 2021.

Environment

  • Python : 3.6
  • Ubuntu : 18.04
  • CUDA : 11.1
  • cudnn : 8.0.5
  • torch : 1.7.1
  • torchvision : 0.8.2
  • GPU : one Nvidia RTX3090

Installation

  • First, you need to install python and other packages.

    pip install -r requirements.txt
  • Then, you need to install torch and torchvision. We tested our code on torch1.7.1 and torchvision0.8.2. But our code can also work with torch version >= 1.5.0.

Quick Demo

  • Download pretrained GMR model from [pretrained GMR] and make them look like this:

    ${GMR_ROOT}
     |-- results
         |-- GMR
             |-- final_model.pth
    
  • Download other model files from [other model files] and make them look like this:

    ${GMR_ROOT}
     |-- data
         |-- gmr_data
             |-- J_regressor_extra.npy
             |-- J_regressor_h36m.npy
             |-- SMPL_NEUTRAL.pkl
             |-- gmm_08.pkl
             |-- smpl_mean_params.npz
             |-- spin_model_checkpoint.pth.tar
             |-- vibe_model_w_3dpw.pth.tar
             |-- vibe_model_wo_3dpw.pth.tar
    
  • Finally, download demo videos from [demo videos] and make them look like this:

    ${GMR_ROOT}
    |-- configs
    |-- data
    |-- lib
    |-- results
    |-- scripts
    |-- demo.py
    |-- eval_3dpw.py
    |-- eval_synthetic.py
    |-- DEMO_VIDEO1.mp4
    |-- DEMO_VIDEO2.mp4
    |-- DEMO_VIDEO3.mp4
    |-- DEMO_VIDEO4.mp4
    |-- README.md
    |-- requirements.txt
    |-- run_eval_3dpw.sh
    |-- run_eval_synthetic.sh
    |-- run_train.sh
    |-- train.py
    

Demo code consists of (bounding box tracking) - (VIBE) - (GMR)

python demo.py --vid_file DEMO_VIDEO1.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO2.mp4 --vid_type mp4 --vid_fps 30 --view_type front_large --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO3.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

python demo.py --vid_file DEMO_VIDEO4.mp4 --vid_type mp4 --vid_fps 30 --view_type back --cfg configs/GMR_config.yaml --output_folder './'

Data

You need to follow directory structure of the data as below.

${GMR_ROOT}
  |-- data
    |-- amass
      |-- ACCAD
      |-- BioMotionLab_NTroje
      |-- CMU
      |-- EKUT
      |-- Eyes_Japan_Dataset
      |-- HumanEva
      |-- KIT
      |-- MPI_HDM05
      |-- MPI_Limits
      |-- MPI_mosh
      |-- SFU
      |-- SSM_synced
      |-- TCD_handMocap
      |-- TotalCapture
      |-- Transitions_mocap
    |-- gmr_data
      |-- J_regressor_extra.npy
      |-- J_regressor_h36m.npy
      |-- SMPL_NEUTRAL.pkl
      |-- gmm_08.pkl
      |-- smpl_mean_params.npz
      |-- spin_model_checkpoint.pth.tar
      |-- vibe_model_w_3dpw.pth.tar
      |-- vibe_model_wo_3dpw.pth.tar
    |-- gmr_db
      |-- amass_train_db.pt
      |-- h36m_dsd_val_db.pt
      |-- 3dpw_test_db.pt
      |-- synthetic_camera_motion_off.pt
      |-- synthetic_camera_motion_on.pt
  • Download AMASS dataset from this link and place them in data/amass. Then, you can obtain the training data through the following command. Also, you can download the training data from this link.
    source scripts/prepare_training_data.sh
    
  • Download processed 3DPW data [data]
  • Download processed Human3.6 data [data]
  • Download synthetic dataset [data]

Train

Run the commands below to start training:

./run_train.sh

Evaluation

Run the commands below to start evaluation:

# Evaluation on 3DPW dataset
./run_eval_3dpw.sh

# Evaluation on synthetic dataset
./run_eval_synthetic.sh

References

We borrowed some scripts and models externally. Thanks to the authors for providing great resources.

  • Pretrained VIBE and most of functions are borrowed from VIBE.
  • Pretrained SPIN is borrowed from SPIN.
  • SMPL model files are borrowed from SPIN and SMPLify.
Owner
Seong Hyun Kim
M.S. student in CVLAB, Kwang Woon University
Seong Hyun Kim
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022