Repository for GNSS-based position estimation using a Deep Neural Network

Overview

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural Network (DNN) for position estimation using Global Navigation Satellite System (GNSS) measurements. This work was presented virtually at ION GNSS+ 2021 conference. The presentation can be seen here and our slides can be viewed here

Installation Instructions

This code was developed in a conda environment running on CentOS 7.9.2009 in Sherlock, Stanford University's HPC.

To create the conda environment, use conda env create -f deep-gnss.yml

Code Overview

Directory Structure

deep_gnss
|  config
|  data
|  py_scripts
|  src
   |  correction_network
   |  gnss_lib
   |  totalrecall

Description

Our code is divided into two main parts: src and py-scripts. src contains the core functionality that our project is built on while py-scripts contains standalone python scripts for generating simulated data and training and evaluating the neural network. config contains .yml files to set hyper-parameters for the corresponding scripts and can be modified depending on your requirements. data contains example data files that our code is designed to work with.

Within src, the correction_network module defines the PyTorch DataLoaders and Network models; gnss_lib contains code that is used to simulate/find expected GNSS measurements; totalrecall defines functions and code used to simulate measurements based on a pre-determined 2D NED trajectory.

Using our code

To run the train_*.py scripts, run the command python train_*.py prefix="name_of_your_experiment_here".

To run the data simulation code, run the command python data_gen.py.

Weights for trained networks can be found here

Acknowledgements

The Deep Sets model is taken from the original implementation

We also used the EphemerisManager from Jonathan Mitchell's analysis of the Android Raw GNSS Measurements Dataset (link to file)

Our coordinate analysis code is based on CommaAI's Laika repository

Citing this work

If you use this code in your research, please cite our paper

@inproceedings{kanhere2019consensus,
  title={ Improving GNSS Positioning using Neural Network-based Corrections},
  author={Kanhere, Ashwin Vivek and Gupta, Shubh and Shetty, Akshay and Gao, Grace Xingxin},
  booktitle={32nd International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2021}
  year={2021}
}

Contact

For any feature requests or bug reports, please submit an issue in this GitHub repository with details or a minimal working example to replicate the bug.

For any comments, suggestions or queries about our work, please contact Prof. Grace Gao at gracegao [at] stanford [dot] edu

Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023