Implements pytorch code for the Accelerated SGD algorithm.

Related tags

Deep LearningAccSGD
Overview

AccSGD

This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic Optimization, selected to appear at ICLR 2018.

Usage:

The code can be downloaded and placed in a given local directory. In a manner similar to using any usual optimizer from the pytorch toolkit, it is also possible to use the AccSGD optimizer with little effort. First, we require importing the optimizer through the following command:

from AccSGD import *

Next, an ASGD optimizer working with a given pytorch model can be invoked using the following command:

optimizer = AccSGD(model.parameters(), lr=0.1, kappa = 1000.0, xi = 10.0)

where, lr is the learning rate, kappa the long step parameter and xi is the statistical advantage parameter.

Guidelines on setting parameters/debugging:

The learning rate lr: lr is set in a manner similar to schemes such as vanilla Stochastic Gradient Descent (SGD)/Standard Momentum (Heavy Ball)/Nesterov's Acceleration. Note that lr is a function of batch size - a rigorous quantification of this phenomenon can be found in the following paper. Such a characterization has been observed in several empirical works.

Long Step kappa: As the networks grow deeper (e.g. with resnets) and when dealing with typically harder datasets such as CIFAR/ImageNet, employing kappa to be 10^4 or more helps. For shallow nets and easier datasets such as MNIST, a typical value of kappa can be set as 10^3 or even 10^2.

Statistical Advantage Parameter xi: xi lies between 1.0 and sqrt(kappa). When large batch sizes (nearly matching batch gradient descent) are used, it is advisable to use xi that is closer to sqrt(kappa). In general, as the batch size increases by a factor of k, increase xi by sqrt(k).

Effective ways to debug:

For Nets with ReLU/ELU type activations:

(--1--) Slower convergence: There are three reasons for this to happen:

  • This could be a result of setting the learning rate too low (similar to SGD/vanilla momentum/Nesterov's acceleration).
  • This could be as a result of setting kappa to be too high.
  • The other reason could be that xi has been set to a small value and needs to be increased.

(--2--) Oscillatory behavior/Divergence: There are two reasons for this to happen:

  • This could be a result of setting the learning rate to be too high (similar to SGD/vanilla momentum/Nesterov's acceleration).
  • The other reason is that xi has been set to a large value and needs to be decreased.

For nets with Sigmoid activations:

Slower convergence after an initial rapid decrease in error: This is a sign of an over aggressive setting of parameters and must be treated in a similar manner as the oscillatory/divergence behavior (--2--) encountered in the ReLU/ELU activation case.

Slow convergence right from the start: This is more likely related to slower convergence (--1--) encountered in the ReLU/ELU case.

Citation:

If AccSGD is used in your paper/experiments, please cite the following papers.

@inproceedings{Kidambi2018Insufficiency,
  title={On the insufficiency of existing momentum schemes for Stochastic Optimization},
  author={Kidambi, Rahul and Netrapalli, Praneeth and Jain, Prateek and Kakade, Sham},
  booktitle={International Conference on Learning Representations},
  year={2018}
}

@Article{Jain2017Accelerating,
  title={Accelerating Stochastic Gradient Descent},
  author={Jain, Prateek and Kakade, Sham and Kidambi, Rahul and Netrapalli, Praneeth and Sidford, Aaron},
  journal={CoRR},
  volume = {abs/1704.08227},
  year={2017}
}
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
Neural Ensemble Search for Performant and Calibrated Predictions

Neural Ensemble Search Introduction This repo contains the code accompanying the paper: Neural Ensemble Search for Performant and Calibrated Predictio

AutoML-Freiburg-Hannover 26 Dec 12, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022