A library for uncertainty representation and training in neural networks.

Related tags

Deep Learningenn
Overview

Epistemic Neural Networks

A library for uncertainty representation and training in neural networks.

Introduction

Many applications in deep learning requires or benefit from going beyond a point estimte and representing uncertainty about the model. The coherent use of Bayes’ rule and probability theory are the gold standard for updating beliefs and estimating uncertainty. But exact computation quickly becomes infeasible for even simple problems. Modern machine learning has developed an effective toolkit for learning in high-dimensional using a simple and coherent convention. Epistemic neural network (ENN) is a library that provides a similarly simple and coherent convention for defining and training neural networks that represent uncertainty over a hypothesis class of models.

Technical overview

In a supervised setting, For input x_i ∈ X and outputs y_i ∈ Y a point estimate f_θ(x) is trained by fitting the observed data D = {(xi, yi) for i = 1, ..., N} by minimizing a loss function l(θ, D) ∈ R. In epistemic neural networks we introduce the concept of an epistemic index z ∈ I ⊆ R^{n_z} distributed according to some reference distribution p_z(·). An augmented epistemic function approximator then takes the form f_θ(x, z); where the function class fθ(·, z) is a neural network. The index z allows unambiguous identification of a corresponding function value and sampling z corresponds to sampling from the hypothesis class of functions.

On some level, ENNs are purely a notational convenience and most existing approaches to dealing with uncertainty in deep learning can be rephrased in this way. For example, an ensemble of point estimates {f_θ1, ..., f_θK } can be viewed as an ENN with θ = (θ1, .., θK), z ∈ {1, .., K}, and f_θ(x, z) := f_θz(x). However, this simplicity hides a deeper insight: that the process of epistemic update itself can be tackled through the tools of machine learning typically reserved for point estimates, through the addition of this epistemic index. Further, since these machine learning tools were explicitly designed to scale to large and complex problems, they might provide tractable approximations to large scale Bayesian inference even where the exact computations are intractable.

For a more comprehensive overview, see the accompanying paper.

Reproducing NeurIPS experiments

To reproduce the experiments from our paper please see experiments/neurips_2021.

Getting started

You can get started in our colab tutorial without installing anything on your machine.

Installation

We have tested ENN on Python 3.7. To install the dependencies:

  1. Optional: We recommend using a Python virtual environment to manage your dependencies, so as not to clobber your system installation:

    python3 -m venv enn
    source enn/bin/activate
    pip install --upgrade pip setuptools
  2. Install ENN directly from github:

    pip install git+https://github.com/deepmind/enn
  3. Test that you can load ENN by training a simple ensemble ENN.

    from acme.utils.loggers.terminal import TerminalLogger
    
    from enn import losses
    from enn import networks
    from enn import supervised
    from enn.supervised import regression_data
    import optax
    
    # A small dummy dataset
    dataset = regression_data.make_dataset()
    
    # Logger
    logger = TerminalLogger('supervised_regression')
    
    # ENN
    enn = networks.MLPEnsembleMatchedPrior(
        output_sizes=[50, 50, 1],
        num_ensemble=10,
    )
    
    # Loss
    loss_fn = losses.average_single_index_loss(
        single_loss=losses.L2LossWithBootstrap(),
        num_index_samples=10
    )
    
    # Optimizer
    optimizer = optax.adam(1e-3)
    
    # Train the experiment
    experiment = supervised.Experiment(
        enn, loss_fn, optimizer, dataset, seed=0, logger=logger)
    experiment.train(FLAGS.num_batch)

More examples can be found in the colab tutorial.

  1. Optional: run the tests by executing ./test.sh from ENN root directory.

Citing

If you use ENN in your work, please cite the accompanying paper:

@inproceedings{,
    title={Epistemic Neural Networks},
    author={Ian Osband, Zheng Wen, Mohammad Asghari, Morteza Ibrahimi, Xiyuan Lu, Benjamin Van Roy},
    booktitle={arxiv},
    year={2021},
    url={https://arxiv.org/abs/2107.08924}
}
Owner
DeepMind
DeepMind
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022