Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Overview

Attention Is All You Need Paper Implementation

This is my from-scratch implementation of the original transformer architecture from the following paper: Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Table of Contents

About

"We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. " - Abstract

Transformers came to be a groundbreaking advance in neural network architectures which revolutionized what we can do with NLP and beyond. To name a few applications consider the application of BERT to Google search and GPT to Github Copilot. Those architectures are upgrades on the original transformer architecture described in this seminal paper. The goal of this repository is to provide an implementation that is easy to follow and understand while reading the paper. Setup is easy and everything is runnable on CPU for learning purposes.

✔️ Highly customizable configuration and training loop
✔️ Runnable on CPU and GPU
✔️ W&B integration for detailed logging of every metric
✔️ Pretrained models and their training details
✔️ Gradient Accumulation
✔️ Label smoothing
✔️ BPE and WordLevel Tokenizers
✔️ Dynamic Batching
✔️ Batch Dataset Processing
✔️ Bleu-score calculation during training
✔️ Documented dimensions for every step of the architecture
✔️ Shown progress of translation for an example after every epoch
✔️ Tutorial notebook (Coming soon...)

Setup

Environment

Using Miniconda/Anaconda:

  1. cd path_to_repo
  2. conda env create
  3. conda activate attention-is-all-you-need-paper

Note: Depending on your GPU you might need to switch cudatoolkit to version 10.2

Pretrained Models

To download the pretrained model and tokenizer run:

python scripts/download_pretrained.py

Note: If prompted about wandb setting select option 3

Usage

Training

Before starting training you can either choose a configuration out of available ones or create your own inside a single file src/config.py. The available parameters to customize, sorted by categories, are:

  • Run 🚅 :
    • RUN_NAME - Name of a training run
    • RUN_DESCRIPTION - Description of a training run
    • RUNS_FOLDER_PTH - Saving destination of a training run
  • Data 🔡 :
    • DATASET_SIZE - Number of examples you want to include from WMT14 en-de dataset (max 4,500,000)
    • TEST_PROPORTION - Test set proportion
    • MAX_SEQ_LEN - Maximum allowed sequence length
    • VOCAB_SIZE - Size of the vocabulary (good choice is dependant on the tokenizer)
    • TOKENIZER_TYPE - 'wordlevel' or 'bpe'
  • Training 🏋️‍♂️ :
    • BATCH_SIZE - Batch size
    • GRAD_ACCUMULATION_STEPS - Over how many batches to accumulate gradients before optimizing the parameters
    • WORKER_COUNT - Number of workers used in dataloaders
    • EPOCHS - Number of epochs
  • Optimizer 📉 :
    • BETAS - Adam beta parameter
    • EPS - Adam eps parameter
  • Scheduler ⏲️ :
    • N_WARMUP_STEPS - How many warmup steps to use in the scheduler
  • Model 🤖 :
    • D_MODEL - Model dimension
    • N_BLOCKS - Number of encoder and decoder blocks
    • N_HEADS - Number of heads in the Multi-Head attention mechanism
    • D_FF - Dimension of the Position Wise Feed Forward network
    • DROPOUT_PROBA - Dropout probability
  • Other 🧰 :
    • DEVICE - 'gpu' or 'cpu'
    • MODEL_SAVE_EPOCH_CNT - After how many epochs to save a model checkpoint
    • LABEL_SMOOTHING - Whether to apply label smoothing

Once you decide on the configuration edit the config_name in train.py and do:

$ cd src
$ python train.py

Inference

For inference I created a simple app with Streamlit which runs in your browser. Make sure to train or download the pretrained models beforehand. The app looks at the model directory for model and tokenizer checkpoints.

$ streamlit run app/inference_app.py
app.mp4

Data

Same WMT 2014 data is used for the English-to-German translation task. Dataset contains about 4,500,000 sentence pairs but you can manually specify the dataset size if you want to lower it and see some results faster. When training is initiated the dataset is automatically downloaded, preprocessed, tokenized and dataloaders are created. Also, a custom batch sampler is used for dynamic batching and padding of sentences of similar lengths which speeds up training. HuggingFace 🤗 datasets and tokenizers are used to achieve this very fast.

Architecture

The original transformer architecture presented in this paper consists of an encoder and decoder part purposely included to match the seq2seq problem type of machine translation. There are also encoder-only (e.g. BERT) and decoder-only (e.g. GPT) transformer architectures, those won't be covered here. One of the main features of transformers , in general, is parallelized sequence processing which RNN's lack. Main ingredient here is the attention mechanism which enables creating modified word representations (attention representations) that take into account the word's meaning in relation to other words in a sequence (e.g. the word "bank" can represent a financial institution or land along the edge of a river as in "river bank"). Depending on how we think about a word we may choose to represent it differently. This transcends the limits of traditional word embeddings.

For a detailed walkthrough of the architecture check the notebooks/tutorial.ipynb

Weights and Biases Logs

Weights and Biases is a very powerful tool for MLOps. I integrated it with this project to automatically provide very useful logs and visualizations when training. In fact, you can take a look at how the training looked for the pretrained models at this project link. All logs and visualizations are synced real time to the cloud.

When you start training you will be asked:

wandb: (1) Create W&B account
wandb: (2) Use an existing W&B account
wandb: (3) Don't visualize my results
wandb: Enter your choice: 

For creating and syncing the visualizations to the cloud you will need a W&B account. Creating an account and using it won't take you more than a minute and it's free. If don't want to visualize results select option 3.

Citation

Please use this bibtex if you want to cite this repository:

@misc{Koch2021attentionisallyouneed,
  author = {Koch, Brando},
  title = {attention-is-all-you-need},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/bkoch4142/MISSING}},
}

License

This repository is under an MIT License

License: MIT

Owner
Brando Koch
Machine Learning Engineer with experience in ML, DL , NLP & CV specializing in ConversationalAI & NLP.
Brando Koch
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022