Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Overview

Attention Is All You Need Paper Implementation

This is my from-scratch implementation of the original transformer architecture from the following paper: Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Table of Contents

About

"We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. " - Abstract

Transformers came to be a groundbreaking advance in neural network architectures which revolutionized what we can do with NLP and beyond. To name a few applications consider the application of BERT to Google search and GPT to Github Copilot. Those architectures are upgrades on the original transformer architecture described in this seminal paper. The goal of this repository is to provide an implementation that is easy to follow and understand while reading the paper. Setup is easy and everything is runnable on CPU for learning purposes.

✔️ Highly customizable configuration and training loop
✔️ Runnable on CPU and GPU
✔️ W&B integration for detailed logging of every metric
✔️ Pretrained models and their training details
✔️ Gradient Accumulation
✔️ Label smoothing
✔️ BPE and WordLevel Tokenizers
✔️ Dynamic Batching
✔️ Batch Dataset Processing
✔️ Bleu-score calculation during training
✔️ Documented dimensions for every step of the architecture
✔️ Shown progress of translation for an example after every epoch
✔️ Tutorial notebook (Coming soon...)

Setup

Environment

Using Miniconda/Anaconda:

  1. cd path_to_repo
  2. conda env create
  3. conda activate attention-is-all-you-need-paper

Note: Depending on your GPU you might need to switch cudatoolkit to version 10.2

Pretrained Models

To download the pretrained model and tokenizer run:

python scripts/download_pretrained.py

Note: If prompted about wandb setting select option 3

Usage

Training

Before starting training you can either choose a configuration out of available ones or create your own inside a single file src/config.py. The available parameters to customize, sorted by categories, are:

  • Run 🚅 :
    • RUN_NAME - Name of a training run
    • RUN_DESCRIPTION - Description of a training run
    • RUNS_FOLDER_PTH - Saving destination of a training run
  • Data 🔡 :
    • DATASET_SIZE - Number of examples you want to include from WMT14 en-de dataset (max 4,500,000)
    • TEST_PROPORTION - Test set proportion
    • MAX_SEQ_LEN - Maximum allowed sequence length
    • VOCAB_SIZE - Size of the vocabulary (good choice is dependant on the tokenizer)
    • TOKENIZER_TYPE - 'wordlevel' or 'bpe'
  • Training 🏋️‍♂️ :
    • BATCH_SIZE - Batch size
    • GRAD_ACCUMULATION_STEPS - Over how many batches to accumulate gradients before optimizing the parameters
    • WORKER_COUNT - Number of workers used in dataloaders
    • EPOCHS - Number of epochs
  • Optimizer 📉 :
    • BETAS - Adam beta parameter
    • EPS - Adam eps parameter
  • Scheduler ⏲️ :
    • N_WARMUP_STEPS - How many warmup steps to use in the scheduler
  • Model 🤖 :
    • D_MODEL - Model dimension
    • N_BLOCKS - Number of encoder and decoder blocks
    • N_HEADS - Number of heads in the Multi-Head attention mechanism
    • D_FF - Dimension of the Position Wise Feed Forward network
    • DROPOUT_PROBA - Dropout probability
  • Other 🧰 :
    • DEVICE - 'gpu' or 'cpu'
    • MODEL_SAVE_EPOCH_CNT - After how many epochs to save a model checkpoint
    • LABEL_SMOOTHING - Whether to apply label smoothing

Once you decide on the configuration edit the config_name in train.py and do:

$ cd src
$ python train.py

Inference

For inference I created a simple app with Streamlit which runs in your browser. Make sure to train or download the pretrained models beforehand. The app looks at the model directory for model and tokenizer checkpoints.

$ streamlit run app/inference_app.py
app.mp4

Data

Same WMT 2014 data is used for the English-to-German translation task. Dataset contains about 4,500,000 sentence pairs but you can manually specify the dataset size if you want to lower it and see some results faster. When training is initiated the dataset is automatically downloaded, preprocessed, tokenized and dataloaders are created. Also, a custom batch sampler is used for dynamic batching and padding of sentences of similar lengths which speeds up training. HuggingFace 🤗 datasets and tokenizers are used to achieve this very fast.

Architecture

The original transformer architecture presented in this paper consists of an encoder and decoder part purposely included to match the seq2seq problem type of machine translation. There are also encoder-only (e.g. BERT) and decoder-only (e.g. GPT) transformer architectures, those won't be covered here. One of the main features of transformers , in general, is parallelized sequence processing which RNN's lack. Main ingredient here is the attention mechanism which enables creating modified word representations (attention representations) that take into account the word's meaning in relation to other words in a sequence (e.g. the word "bank" can represent a financial institution or land along the edge of a river as in "river bank"). Depending on how we think about a word we may choose to represent it differently. This transcends the limits of traditional word embeddings.

For a detailed walkthrough of the architecture check the notebooks/tutorial.ipynb

Weights and Biases Logs

Weights and Biases is a very powerful tool for MLOps. I integrated it with this project to automatically provide very useful logs and visualizations when training. In fact, you can take a look at how the training looked for the pretrained models at this project link. All logs and visualizations are synced real time to the cloud.

When you start training you will be asked:

wandb: (1) Create W&B account
wandb: (2) Use an existing W&B account
wandb: (3) Don't visualize my results
wandb: Enter your choice: 

For creating and syncing the visualizations to the cloud you will need a W&B account. Creating an account and using it won't take you more than a minute and it's free. If don't want to visualize results select option 3.

Citation

Please use this bibtex if you want to cite this repository:

@misc{Koch2021attentionisallyouneed,
  author = {Koch, Brando},
  title = {attention-is-all-you-need},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/bkoch4142/MISSING}},
}

License

This repository is under an MIT License

License: MIT

Owner
Brando Koch
Machine Learning Engineer with experience in ML, DL , NLP & CV specializing in ConversationalAI & NLP.
Brando Koch
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022