Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Overview

Deep Networks from the Principle of Rate Reduction

This repository is the official NumPy implementation of the paper Deep Networks from the Principle of Rate Reduction (2021) by Kwan Ho Ryan Chan* (UC Berkeley), Yaodong Yu* (UC Berkeley), Chong You* (UC Berkeley), Haozhi Qi (UC Berkeley), John Wright (Columbia), and Yi Ma (UC Berkeley). For PyTorch version of ReduNet, please visit https://github.com/ryanchankh/redunet.

What is ReduNet?

ReduNet is a deep neural network construcuted naturally by deriving the gradients of the Maximal Coding Rate Reduction (MCR2) [1] objective. Every layer of this network can be interpreted based on its mathematical operations and the network collectively is trained in a feed-forward manner only. In addition, by imposing shift invariant properties to our network, the convolutional operator can be derived using only the data and MCR2 objective function, hence making our network design principled and interpretable.


Figure: Weights and operations for one layer of ReduNet

[1] Yu, Yaodong, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. "Learning diverse and discriminative representations via the principle of maximal coding rate reduction" Advances in Neural Information Processing Systems 33 (2020).

Requirements

This codebase is written for python3. To install necessary python packages, run conda create --name redunet_official --file requirements.txt.

File Structure

Training

To train a model, one can run the training files, which has the dataset as thier names. For the appropriate commands to reproduce our experimental results, check out the experiment section below. All the files for training is listed below:

  • gaussian2d.py: mixture of Guassians in 2-dimensional Reals
  • gaussian3d.py: mixture of Guassians in 3-dimensional Reals
  • iris.py: Iris dataset from UCI Machine Learning Repository (link)
  • mice.py: Mice Protein Expression Data Set (link)
  • mnist1d.py: MNIST dataset, each image is multi-channel polar form and model is trained to have rotational invariance
  • mnist2d.py: MNIST dataset, each image is single-channel and model is trained to have translational invariance
  • sinusoid.py: mixture of sinusoidal waves, single and multichannel data

Evaluation and Ploting

Evaluation and plots are performed within each file. Functions are located in evaluate.py and plot.py.

Experiments

Run the following commands to train, test, evaluate and plot figures for different settings:

Main Paper

Gaussian 2D: Figure 2(a) - (c)

$ python3 gaussian2d.py --data 1 --noise 0.1 --samples 500 --layers 2000 --eta 0.5 --eps 0.1

Gaussian 3D: Figure 2(d) - (f)

$ python3 gaussian3d.py --data 1 --noise 0.1 --samples 500 --layers 2000 --eta 0.5 --eps 0.1

Rotational-Invariant MNIST: 3(a) - (d)

$ python3 mnist1d.py --samples 10 --channels 15 --outchannels 20 --time 200 --classes 0 1 2 3 4 5 6 7 8 9 --layers 40 --eta 0.5 --eps 0.1  --ksize 5

Translational-Invariant MNIST: 3(e) - (h)

$ python3 mnist2d.py --classes 0 1 2 3 4 5 6 7 8 9 --samples 10 --layers 25 --outchannels 75 --ksize 9 --eps 0.1 --eta 0.5

Appendix

For Iris and Mice Protein:

$ python3 iris.py --layers 4000 --eta 0.1 --eps 0.1
$ python3 mice.py --layers 4000 --eta 0.1 --eps 0.1

For 1D signals (Sinusoids):

$ python3 sinusoid.py --time 150 --samples 400 --channels 7 --layers 2000 --eps 0.1 --eta 0.1 --data 7 --kernel 3

For 1D signals (Rotational Invariant MNIST):

$ python3 mnist1d.py --classes 0 1 --samples 2000 --time 200 --channels 5 --layers 3500 --eta 0.5 --eps 0.1

For 2D translational invariant MNIST data:

$ python3 mnist2d.py --classes 0 1 --samples 500 --layers 2000 --eta 0.5 --eps 0.1

Reference

For technical details and full experimental results, please check the paper. Please consider citing our work if you find it helpful to yours:

@article{chan2020deep,
  title={Deep networks from the principle of rate reduction},
  author={Chan, Kwan Ho Ryan and Yu, Yaodong and You, Chong and Qi, Haozhi and Wright, John and Ma, Yi},
  journal={arXiv preprint arXiv:2010.14765},
  year={2020}
}

License and Contributing

  • This README is formatted based on paperswithcode.
  • Feel free to post issues via Github.

Contact

Please contact [email protected] and [email protected] if you have any question on the codes.

Owner
Ryan Chan
Interested in developing principled deep learning algorithms
Ryan Chan
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022