Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Overview

Deep Networks from the Principle of Rate Reduction

This repository is the official NumPy implementation of the paper Deep Networks from the Principle of Rate Reduction (2021) by Kwan Ho Ryan Chan* (UC Berkeley), Yaodong Yu* (UC Berkeley), Chong You* (UC Berkeley), Haozhi Qi (UC Berkeley), John Wright (Columbia), and Yi Ma (UC Berkeley). For PyTorch version of ReduNet, please visit https://github.com/ryanchankh/redunet.

What is ReduNet?

ReduNet is a deep neural network construcuted naturally by deriving the gradients of the Maximal Coding Rate Reduction (MCR2) [1] objective. Every layer of this network can be interpreted based on its mathematical operations and the network collectively is trained in a feed-forward manner only. In addition, by imposing shift invariant properties to our network, the convolutional operator can be derived using only the data and MCR2 objective function, hence making our network design principled and interpretable.


Figure: Weights and operations for one layer of ReduNet

[1] Yu, Yaodong, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. "Learning diverse and discriminative representations via the principle of maximal coding rate reduction" Advances in Neural Information Processing Systems 33 (2020).

Requirements

This codebase is written for python3. To install necessary python packages, run conda create --name redunet_official --file requirements.txt.

File Structure

Training

To train a model, one can run the training files, which has the dataset as thier names. For the appropriate commands to reproduce our experimental results, check out the experiment section below. All the files for training is listed below:

  • gaussian2d.py: mixture of Guassians in 2-dimensional Reals
  • gaussian3d.py: mixture of Guassians in 3-dimensional Reals
  • iris.py: Iris dataset from UCI Machine Learning Repository (link)
  • mice.py: Mice Protein Expression Data Set (link)
  • mnist1d.py: MNIST dataset, each image is multi-channel polar form and model is trained to have rotational invariance
  • mnist2d.py: MNIST dataset, each image is single-channel and model is trained to have translational invariance
  • sinusoid.py: mixture of sinusoidal waves, single and multichannel data

Evaluation and Ploting

Evaluation and plots are performed within each file. Functions are located in evaluate.py and plot.py.

Experiments

Run the following commands to train, test, evaluate and plot figures for different settings:

Main Paper

Gaussian 2D: Figure 2(a) - (c)

$ python3 gaussian2d.py --data 1 --noise 0.1 --samples 500 --layers 2000 --eta 0.5 --eps 0.1

Gaussian 3D: Figure 2(d) - (f)

$ python3 gaussian3d.py --data 1 --noise 0.1 --samples 500 --layers 2000 --eta 0.5 --eps 0.1

Rotational-Invariant MNIST: 3(a) - (d)

$ python3 mnist1d.py --samples 10 --channels 15 --outchannels 20 --time 200 --classes 0 1 2 3 4 5 6 7 8 9 --layers 40 --eta 0.5 --eps 0.1  --ksize 5

Translational-Invariant MNIST: 3(e) - (h)

$ python3 mnist2d.py --classes 0 1 2 3 4 5 6 7 8 9 --samples 10 --layers 25 --outchannels 75 --ksize 9 --eps 0.1 --eta 0.5

Appendix

For Iris and Mice Protein:

$ python3 iris.py --layers 4000 --eta 0.1 --eps 0.1
$ python3 mice.py --layers 4000 --eta 0.1 --eps 0.1

For 1D signals (Sinusoids):

$ python3 sinusoid.py --time 150 --samples 400 --channels 7 --layers 2000 --eps 0.1 --eta 0.1 --data 7 --kernel 3

For 1D signals (Rotational Invariant MNIST):

$ python3 mnist1d.py --classes 0 1 --samples 2000 --time 200 --channels 5 --layers 3500 --eta 0.5 --eps 0.1

For 2D translational invariant MNIST data:

$ python3 mnist2d.py --classes 0 1 --samples 500 --layers 2000 --eta 0.5 --eps 0.1

Reference

For technical details and full experimental results, please check the paper. Please consider citing our work if you find it helpful to yours:

@article{chan2020deep,
  title={Deep networks from the principle of rate reduction},
  author={Chan, Kwan Ho Ryan and Yu, Yaodong and You, Chong and Qi, Haozhi and Wright, John and Ma, Yi},
  journal={arXiv preprint arXiv:2010.14765},
  year={2020}
}

License and Contributing

  • This README is formatted based on paperswithcode.
  • Feel free to post issues via Github.

Contact

Please contact [email protected] and [email protected] if you have any question on the codes.

Owner
Ryan Chan
Interested in developing principled deep learning algorithms
Ryan Chan
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021