Code and data for "TURL: Table Understanding through Representation Learning"

Related tags

Deep LearningTURL
Overview

TURL

This Repo contains code and data for "TURL: Table Understanding through Representation Learning".

overview_0

Environment and Setup

The model is mainly developped using PyTorch and Transformers. You can access the docker image we used here docker pull xdeng/transformers:latest

Data

Link for processed pretraining and evaluation data, as well as the model checkpoints can be accessed here. This is created based on the original WikiTables corpus (http://websail-fe.cs.northwestern.edu/TabEL/)

TODO: Instruction for preparing code from original WikiTable Corpus

Pretraining

Data

The [split]_tables.jsonl files are used for pretraining and creation of all test datasets, with 570171 / 5036 / 4964 tables for training/validation/testing.

'_id': '27289759-6', # table id
'pgTitle': '2010 Santos FC season', # page title
'sectionTitle': 'Out', # section title
'tableCaption': '', # table caption
'pgId': 27289759, # wikipedia page id
'tableId': 6, # index of the table in the wikipedia page
'tableData': [[{'text': 'DF', # cell value
    'surfaceLinks': [{'surface': 'DF',
      'locType': 'MAIN_TABLE',
      'target': {'id': 649702,
       'language': 'en',
       'title': 'Defender_(association_football)'},
      'linkType': 'INTERNAL'}] # urls in the cell
      } # one for each cell,...]
      ...]
'tableHeaders': [['Pos.', 'Name', 'Moving to', 'Type', 'Source']], # row headers
'processed_tableHeaders': ['pos.', 'name', 'moving to', 'type', 'source'], # processed headers that will be used
'merged_row': [], # merged rows, we identify them by comparing the cell values
'entityCell': [[1, 1, 1, 0, 0],...], # whether the cell is an entity cell, get by checking the urls inside
'entityColumn': [0, 1, 2], # whether the column is an entity column
'column_type': [0, 0, 0, 4, 2], # more finegrained column type for debug, here we only use 0: entity columns
'unique': [0.16, 1.0, 0.75, 0, 0], # the ratio of unique entities in that column
'entity_count': 72, # total number of entities in the table
'subject_column': 1 # the column index of the subject column

Each line represents a Wikipedia table. Table content is stored in the field tableData, where the target is the actual entity links to the cell, and is also the entity to retrieve. The id and title are the Wikipedia_id and Wikipedia_title of the entity. entityCell and entityColumn shows the cells and columns that pass our filtering and are identified to contain entity information.

There is also an entity_vocab.txt file contains all the entities we used in all experiments (these are the entities shown in pretraining). Each line contains vocab_id, Wikipedia_id, Wikipedia_title, freebase_mid, count of an entity.

Get representation for a given table To use the pretrained model as a table encoder, use the HybridTableMaskedLM model class. There is a example in evaluate_task.ipynb for cell filling task, which also shows how to get representation for arbitrary table.

Finetuning & Evaluation

To systematically evaluate our pre-trained framework as well as facilitate research, we compile a table understanding benchmark consisting of 6 widely studied tasks covering table interpretation (e.g., entity linking, column type annotation, relation extraction) and table augmentation (e.g., row population, cell filling, schema augmentation).

Please see evaluate_task.ipynb for running evaluation for different tasks.

Entity Linking

We use two datasets for evaluation in entity linking. One is based on our train/dev/test split, the linked entity to each cell is the target for entity linking. For the WikiGS corpus, please find the original release here http://www.cs.toronto.edu/~oktie/webtables/ .

We use entity name, together with entity description and entity type to get KB entity representation for entity linking. There are three variants for the entity linking: 0: name + description + type, 1: name + type, 2: name + description.

Evaluation

Please see EL in evaluate_task.ipynb

Data

Data are stored in [split].table_entity_linking.json

'23235546-1', # table id
'Ivan Lendl career statistics', # page title
'Singles: 19 finals (8 titles, 11 runner-ups)', # section title
'', # caption
['outcome', 'year', ...], # headers
[[[0, 4], 'Björn Borg'], [[9, 2], 'Wimbledon'], ...], # cells, [index, entity mention (cell text)]
[['Björn Borg', 'Swedish tennis player', []], ['Björn Borg', 'Swedish swimmer', ['Swimmer']], ...], # candidate entities, this the merged set for all cells. [entity name, entity description, entity types]
[0, 12, ...] # labels, this is the index of the gold entity in the candidate entities
[[0, 1, ...], [11, 12, 13, ...], ...] # candidates for each cell

Column Type Annotation

We divide the information available in the table for column type annotation as: entity mention, table metadata and entity embedding. We experiment under 6 settings: 0: all information, 1: only entity related, 2: only table metadata, 3: no entity embedding, 4: only entity mention, 5: only entity embedding.

Data

Data are stored in [split].table_col_type.json. There is a type_vocab.txt store the target types.

'27295818-29', # table id
 '2010–11 rangers f.c. season', # page title
 27295818, # Wikipedia page id
 'overall', # section title
 '', # caption
 ['competition', 'started round', 'final position / round'], # headers
 [[[[0, 0], [26980923, 'Scottish Premier League']],
   [[1, 0], [18255941, 'UEFA Champions League']],
   ...],
  ...,
  [[[1, 2], [18255941, 'Group stage']],
   [[2, 2], [20795986, 'Round of 16']],
   ...]], # cells, [index, [entity id, entity mention (cell text)]]
 [['time.event'], ..., ['time.event']] # column type annotations, a column may have multiple types.

Relation Extraction

There is a relation_vocab.txt store the target relations. In the [split].table_rel_extraction.json file, each example contains table_id, pgTitle, pgId, secTitle, caption, valid_headers, entities, relations similar to column type classification. Note here the relation is between the subject column (leftmost) and each of the object columns (the rest). We do this to avoid checking all column pairs in the table.

Row Population

For row population, the task is to predict the entities linked to the entity cells in the leftmost entity column. A small amount of tables is further filtered out from test_tables.jsonl which results in the final 4132 tables for testing.

Cell Filling

Please see Pretrained and CF in evaluate_task.ipynb. You can directly load the checkpoint under pretrained, as we do not finetune the model for cell filling.

We have three baselines for cell filling: Exact, H2H, H2V. The header vectors and co-occurrence statistics are pre-computed, please see baselines/cell_filling/cell_filling.py for details.

Schema Augmentation

TODO: Refactoring the evaluation scripts and add instruction.

Acknowledgement

We use the WikiTable corpus for developing the dataset for pretraining and most of the evaluation. We also adopt the WikiGS for evaluation of entity linking.

We use multiple existing systems as baseline for evaluation. We took the code released by the author and made minor changes to fit our setting, please refer to the paper for more details.

Owner
SunLab-OSU
SunLab-OSU
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022