Code and data for "TURL: Table Understanding through Representation Learning"

Related tags

Deep LearningTURL
Overview

TURL

This Repo contains code and data for "TURL: Table Understanding through Representation Learning".

overview_0

Environment and Setup

The model is mainly developped using PyTorch and Transformers. You can access the docker image we used here docker pull xdeng/transformers:latest

Data

Link for processed pretraining and evaluation data, as well as the model checkpoints can be accessed here. This is created based on the original WikiTables corpus (http://websail-fe.cs.northwestern.edu/TabEL/)

TODO: Instruction for preparing code from original WikiTable Corpus

Pretraining

Data

The [split]_tables.jsonl files are used for pretraining and creation of all test datasets, with 570171 / 5036 / 4964 tables for training/validation/testing.

'_id': '27289759-6', # table id
'pgTitle': '2010 Santos FC season', # page title
'sectionTitle': 'Out', # section title
'tableCaption': '', # table caption
'pgId': 27289759, # wikipedia page id
'tableId': 6, # index of the table in the wikipedia page
'tableData': [[{'text': 'DF', # cell value
    'surfaceLinks': [{'surface': 'DF',
      'locType': 'MAIN_TABLE',
      'target': {'id': 649702,
       'language': 'en',
       'title': 'Defender_(association_football)'},
      'linkType': 'INTERNAL'}] # urls in the cell
      } # one for each cell,...]
      ...]
'tableHeaders': [['Pos.', 'Name', 'Moving to', 'Type', 'Source']], # row headers
'processed_tableHeaders': ['pos.', 'name', 'moving to', 'type', 'source'], # processed headers that will be used
'merged_row': [], # merged rows, we identify them by comparing the cell values
'entityCell': [[1, 1, 1, 0, 0],...], # whether the cell is an entity cell, get by checking the urls inside
'entityColumn': [0, 1, 2], # whether the column is an entity column
'column_type': [0, 0, 0, 4, 2], # more finegrained column type for debug, here we only use 0: entity columns
'unique': [0.16, 1.0, 0.75, 0, 0], # the ratio of unique entities in that column
'entity_count': 72, # total number of entities in the table
'subject_column': 1 # the column index of the subject column

Each line represents a Wikipedia table. Table content is stored in the field tableData, where the target is the actual entity links to the cell, and is also the entity to retrieve. The id and title are the Wikipedia_id and Wikipedia_title of the entity. entityCell and entityColumn shows the cells and columns that pass our filtering and are identified to contain entity information.

There is also an entity_vocab.txt file contains all the entities we used in all experiments (these are the entities shown in pretraining). Each line contains vocab_id, Wikipedia_id, Wikipedia_title, freebase_mid, count of an entity.

Get representation for a given table To use the pretrained model as a table encoder, use the HybridTableMaskedLM model class. There is a example in evaluate_task.ipynb for cell filling task, which also shows how to get representation for arbitrary table.

Finetuning & Evaluation

To systematically evaluate our pre-trained framework as well as facilitate research, we compile a table understanding benchmark consisting of 6 widely studied tasks covering table interpretation (e.g., entity linking, column type annotation, relation extraction) and table augmentation (e.g., row population, cell filling, schema augmentation).

Please see evaluate_task.ipynb for running evaluation for different tasks.

Entity Linking

We use two datasets for evaluation in entity linking. One is based on our train/dev/test split, the linked entity to each cell is the target for entity linking. For the WikiGS corpus, please find the original release here http://www.cs.toronto.edu/~oktie/webtables/ .

We use entity name, together with entity description and entity type to get KB entity representation for entity linking. There are three variants for the entity linking: 0: name + description + type, 1: name + type, 2: name + description.

Evaluation

Please see EL in evaluate_task.ipynb

Data

Data are stored in [split].table_entity_linking.json

'23235546-1', # table id
'Ivan Lendl career statistics', # page title
'Singles: 19 finals (8 titles, 11 runner-ups)', # section title
'', # caption
['outcome', 'year', ...], # headers
[[[0, 4], 'Björn Borg'], [[9, 2], 'Wimbledon'], ...], # cells, [index, entity mention (cell text)]
[['Björn Borg', 'Swedish tennis player', []], ['Björn Borg', 'Swedish swimmer', ['Swimmer']], ...], # candidate entities, this the merged set for all cells. [entity name, entity description, entity types]
[0, 12, ...] # labels, this is the index of the gold entity in the candidate entities
[[0, 1, ...], [11, 12, 13, ...], ...] # candidates for each cell

Column Type Annotation

We divide the information available in the table for column type annotation as: entity mention, table metadata and entity embedding. We experiment under 6 settings: 0: all information, 1: only entity related, 2: only table metadata, 3: no entity embedding, 4: only entity mention, 5: only entity embedding.

Data

Data are stored in [split].table_col_type.json. There is a type_vocab.txt store the target types.

'27295818-29', # table id
 '2010–11 rangers f.c. season', # page title
 27295818, # Wikipedia page id
 'overall', # section title
 '', # caption
 ['competition', 'started round', 'final position / round'], # headers
 [[[[0, 0], [26980923, 'Scottish Premier League']],
   [[1, 0], [18255941, 'UEFA Champions League']],
   ...],
  ...,
  [[[1, 2], [18255941, 'Group stage']],
   [[2, 2], [20795986, 'Round of 16']],
   ...]], # cells, [index, [entity id, entity mention (cell text)]]
 [['time.event'], ..., ['time.event']] # column type annotations, a column may have multiple types.

Relation Extraction

There is a relation_vocab.txt store the target relations. In the [split].table_rel_extraction.json file, each example contains table_id, pgTitle, pgId, secTitle, caption, valid_headers, entities, relations similar to column type classification. Note here the relation is between the subject column (leftmost) and each of the object columns (the rest). We do this to avoid checking all column pairs in the table.

Row Population

For row population, the task is to predict the entities linked to the entity cells in the leftmost entity column. A small amount of tables is further filtered out from test_tables.jsonl which results in the final 4132 tables for testing.

Cell Filling

Please see Pretrained and CF in evaluate_task.ipynb. You can directly load the checkpoint under pretrained, as we do not finetune the model for cell filling.

We have three baselines for cell filling: Exact, H2H, H2V. The header vectors and co-occurrence statistics are pre-computed, please see baselines/cell_filling/cell_filling.py for details.

Schema Augmentation

TODO: Refactoring the evaluation scripts and add instruction.

Acknowledgement

We use the WikiTable corpus for developing the dataset for pretraining and most of the evaluation. We also adopt the WikiGS for evaluation of entity linking.

We use multiple existing systems as baseline for evaluation. We took the code released by the author and made minor changes to fit our setting, please refer to the paper for more details.

Owner
SunLab-OSU
SunLab-OSU
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022