Pytorch implementation for RelTransformer

Overview

RelTransformer

Our Architecture

image

This is a Pytorch implementation for RelTransformer

The implementation for Evaluating on VG200 can be found here

Requirements

conda env create -f reltransformer_env.yml

Compilation

Compile the CUDA code in the Detectron submodule and in the repo:

cd $ROOT/lib
sh make.sh

Annotations

create a data folder at the top-level directory of the repository

# ROOT = path/to/cloned/repository
cd $ROOT
mkdir data

GQA

Download it here. Unzip it under the data folder. You should see a gvqa folder unzipped there. It contains seed folder called seed0 that contains .json annotations that suit the dataloader used in this repo.

Visual Genome

Download it here. Unzip it under the data folder. You should see a vg8k folder unzipped there. It contains seed folder called seed3 that contains .json annotations that suit the dataloader used in this repo.

Word2Vec Vocabulary

Create a folder named word2vec_model under data. Download the Google word2vec vocabulary from here. Unzip it under the word2vec_model folder and you should see GoogleNews-vectors-negative300.bin there.

Images

GQA

Create a folder for all images:

# ROOT=path/to/cloned/repository
cd $ROOT/data/gvqa
mkdir images

Download GQA images from the here

Visual Genome

Create a folder for all images:

# ROOT=path/to/cloned/repository
cd $ROOT/data/vg8k
mkdir VG_100K

Download Visual Genome images from the official page. Unzip all images (part 1 and part 2) into VG_100K/. There should be a total of 108249 files.

Pre-trained Object Detection Models

Download pre-trained object detection models here. Unzip it under the root directory and you should see a detection_models folder there.

Evaluating Pre-trained Relationship Detection models

DO NOT CHANGE anything in the provided config files(configs/xx/xxxx.yaml) even if you want to test with less or more than 8 GPUs. Use the environment variable CUDA_VISIBLE_DEVICES to control how many and which GPUs to use. Remove the --multi-gpu-test for single-gpu inference.

Training Relationship Detection Models

It requires 8 GPUS for trianing.

GVQA

Train our relationship network using a VGG16 backbone, run

python -u tools/train_net_reltransformer.py --dataset gvqa --cfg configs/gvqa/e2e_relcnn_VGG16_8_epochs_gvqa_reltransformer.yaml --nw 8 --use_tfboard --seed 1 

Train our relationship network using a VGG16 backbone with WCE loss, run

python -u tools/train_net_reltransformer_WCE.py --dataset gvqa --cfg configs/gvqa/e2e_relcnn_VGG16_8_epochs_gvqa_reltransformer_WCE.yaml --nw 8 --use_tfboard --seed 1

To test the trained networks, run

python tools/test_net_reltransformer.py --dataset gvqa --cfg configs/gvqa/e2e_relcnn_VGG16_8_epochs_gvqa_reltransformer.yaml --load_ckpt  model-path  --use_gt_boxes --use_gt_labels --do_val

To test the trained networks, run

python tools/test_net_reltransformer_WCE.py --dataset gvqa --cfg configs/gvqa/e2e_relcnn_VGG16_8_epochs_gvqa_reltransformer_WCE.yaml --load_ckpt  model-path  --use_gt_boxes --use_gt_labels --do_val

VG8K

Train our relationship network using a VGG16 backbone, run

python -u tools/train_net_reltransformer.py --dataset vg8k --cfg configs/vg8k/e2e_relcnn_VGG16_8_epochs_vg8k_reltransformer.yaml  --nw 8 --use_tfboard --seed 3

Train our relationship network using a VGG16 backbone with WCE loss, run

python -u tools/train_net_reltransformer_wce.py --dataset vg8k --cfg configs/vg8k/e2e_relcnn_VGG16_8_epochs_vg8k_reltransformer_wce.yaml --nw 8 --use_tfboard --seed3

To test the trained networks, run

python tools/test_net_reltransformer.py --dataset vg8k --cfg configs/vg8k/e2e_relcnn_VGG16_8_epochs_vg8k_reltransformer.yaml --load_ckpt  model-path  --use_gt_boxes --use_gt_labels --do_val

To test the trained model with WCE loss function, run

python tools/test_net_reltransformer_wce.py --dataset vg8k --cfg configs/vg8k/e2e_relcnn_VGG16_8_epochs_vg8k_reltransformer_wce.yaml --load_ckpt  model-path  --use_gt_boxes --use_gt_labels --do_val

Acknowledgements

This repository uses code based on the LTVRD source code by sherif, as well as code from the Detectron.pytorch repository by Roy Tseng.

Citing

If you use this code in your research, please use the following BibTeX entry.

@article{chen2021reltransformer,
  title={RelTransformer: Balancing the Visual Relationship Detection from Local Context, Scene and Memory},
  author={Chen, Jun and Agarwal, Aniket and Abdelkarim, Sherif and Zhu, Deyao and Elhoseiny, Mohamed},
  journal={arXiv preprint arXiv:2104.11934},
  year={2021}
}

Owner
Vision CAIR Research Group, KAUST
Vision CAIR Group, KAUST, supported by Mohamed Elhoseiny
Vision CAIR Research Group, KAUST
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023