Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Related tags

Deep LearningAU-GAN
Overview

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN)

Official Tensorflow implementation of Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN)
Jeong-gi Kwak, Youngsaeng Jin, Yuanming Li, Dongsik Yoon, Donghyeon Kim and Hanseok Ko
British Machine Vision Conference (BMVC), 2021

Intro

Night → Day (BDD100K)

Rainy night → Day (Alderdey)


Architecture

Our generator has asymmetric structure for editing day→night and night→day. Please refer our paper for details

Envs

git clone https://github.com/jgkwak95/AU-GAN.git
cd AU-GAN

# Create virtual environment
conda create -y --name augan python=3.6.7
conda activate augan

conda install tensorflow-gpu==1.14.0   # Tensorflow 1.14
pip install --no-cache-dir -r requirements.txt

Preparing datasets

Night → Day
Berkeley DeepDrive dataset contains 100,000 high resolution images of the urban roads for autonomous driving.

Rainy night → Day
Alderley dataset consists of images of two domains, rainy night and daytime. It was collected while driving the same route in each weather environment.

Please download datasets and then construct them following ForkGAN

Training

# Alderley (256x256)
python main_uncer.py --dataset_dir alderley
                     --phase train
                     --experiment_name alderley_exp
                     --batch_size 8 
                     --load_size 286 
                     --fine_size 256 
                     --use_uncertainty True
# BDD100k (512x512)
python main_uncer.py --dataset_dir bdd100k 
                     --phase train
                     --experiment_name bdd_exp
                     --batch_size 4 
                     --load_size 572 
                     --fine_size 512 
                     --use_uncertainty True

Test

# Alderley (256x256)
python main_uncer.py --dataset_dir alderley
                     --phase test
                     --experiment_name alderley_exp
                     --batch_size 1 
                     --load_size 286 
                     --fine_size 256 
                    
# BDD100k (512x512)
python main_uncer.py --dataset_dir bdd100k
                     --phase test
                     --experiment_name bdd_exp
                     --batch_size 1 
                     --load_size 572 
                     --fine_size 512 
                    

Additional results

More results in paper and supplementary

Uncertainty map

Citation

If our code is helpful your research, please cite our paper:

@InProceedings{kwak_adverse_2021},
  author = {Kwak, Jeong-gi and Jin, Youngsaeng and Li, Yuanming and Yoon, Dongsik and Kim, Donghyeon and Ko, Hanseok},
  title = {Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN},
  booktitle = {British Conference of Computer Vision (BMVC)},
  month = {November},
  year = {2021}
}

Acknowledgments

Our code is bulided upon the ForkGAN implementation.

Owner
Jeong-gi Kwak
Jeong-gi Kwak
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023