Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Related tags

Deep LearningAU-GAN
Overview

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN)

Official Tensorflow implementation of Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN)
Jeong-gi Kwak, Youngsaeng Jin, Yuanming Li, Dongsik Yoon, Donghyeon Kim and Hanseok Ko
British Machine Vision Conference (BMVC), 2021

Intro

Night → Day (BDD100K)

Rainy night → Day (Alderdey)


Architecture

Our generator has asymmetric structure for editing day→night and night→day. Please refer our paper for details

Envs

git clone https://github.com/jgkwak95/AU-GAN.git
cd AU-GAN

# Create virtual environment
conda create -y --name augan python=3.6.7
conda activate augan

conda install tensorflow-gpu==1.14.0   # Tensorflow 1.14
pip install --no-cache-dir -r requirements.txt

Preparing datasets

Night → Day
Berkeley DeepDrive dataset contains 100,000 high resolution images of the urban roads for autonomous driving.

Rainy night → Day
Alderley dataset consists of images of two domains, rainy night and daytime. It was collected while driving the same route in each weather environment.

Please download datasets and then construct them following ForkGAN

Training

# Alderley (256x256)
python main_uncer.py --dataset_dir alderley
                     --phase train
                     --experiment_name alderley_exp
                     --batch_size 8 
                     --load_size 286 
                     --fine_size 256 
                     --use_uncertainty True
# BDD100k (512x512)
python main_uncer.py --dataset_dir bdd100k 
                     --phase train
                     --experiment_name bdd_exp
                     --batch_size 4 
                     --load_size 572 
                     --fine_size 512 
                     --use_uncertainty True

Test

# Alderley (256x256)
python main_uncer.py --dataset_dir alderley
                     --phase test
                     --experiment_name alderley_exp
                     --batch_size 1 
                     --load_size 286 
                     --fine_size 256 
                    
# BDD100k (512x512)
python main_uncer.py --dataset_dir bdd100k
                     --phase test
                     --experiment_name bdd_exp
                     --batch_size 1 
                     --load_size 572 
                     --fine_size 512 
                    

Additional results

More results in paper and supplementary

Uncertainty map

Citation

If our code is helpful your research, please cite our paper:

@InProceedings{kwak_adverse_2021},
  author = {Kwak, Jeong-gi and Jin, Youngsaeng and Li, Yuanming and Yoon, Dongsik and Kim, Donghyeon and Ko, Hanseok},
  title = {Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN},
  booktitle = {British Conference of Computer Vision (BMVC)},
  month = {November},
  year = {2021}
}

Acknowledgments

Our code is bulided upon the ForkGAN implementation.

Owner
Jeong-gi Kwak
Jeong-gi Kwak
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023