TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Overview

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

This is an implementation of TCPNet.

arch

Introduction

For video recognition task, a global representation summarizing the whole contents of the video snippets plays an important role for the final performance. However, existing video architectures usually generate it by using a simple, global average pooling (GAP) method, which has limited ability to capture complex dynamics of videos. For image recognition task, there exist evidences showing that covariance pooling has stronger representation ability than GAP. Unfortunately, such plain covariance pooling used in image recognition is an orderless representative, which cannot model spatio-temporal structure inherent in videos. Therefore, this paper proposes a Temporal-attentive Covariance Pooling (TCP), inserted at the end of deep architectures, to produce powerful video representations. Specifi- cally, our TCP first develops a temporal attention module to adaptively calibrate spatio-temporal features for the succeeding covariance pooling, approximatively producing attentive covariance representations. Then, a temporal covariance pooling performs temporal pooling of the attentive covariance representations to char- acterize both intra-frame correlations and inter-frame cross-correlations of the calibrated features. As such, the proposed TCP can capture complex temporal dynamics. Finally, a fast matrix power normalization is introduced to exploit geometry of covariance representations. Note that our TCP is model-agnostic and can be flexibly integrated into any video architectures, resulting in TCPNet for effective video recognition. The extensive experiments on six benchmarks (e.g., Kinetics, Something-Something V1 and Charades) using various video architectures show our TCPNet is clearly superior to its counterparts, while having strong generalization ability.

Citation

@InProceedings{Gao_2021_TCP,
                author = {Zilin, Gao and Qilong, Wang and Bingbing, Zhang and Qinghua, Hu and Peihua, Li},
                title = {Temporal-attentive Covariance Pooling Networks for Video Recognition},
                booktitle = {arxiv preprint axXiv:2021.06xxx},
                year = {2021}
  }

Model Zoo

Kinetics-400

Method Backbone frames 1 crop Acc (%) 30 views Acc (%) Model Pretrained Model test log
TCPNet TSN R50 8f 72.4/90.4 75.3/91.8 K400_TCP_TSN_R50_8f Img1K_R50_GCP log
TCPNet TEA R50 8f 73.9/91.6 76.8/92.9 K400_TCP_TEA_R50_8f Img1K_Res2Net50_GCP log
TCPNet TSN R152 8f 75.7/92.2 78.3/93.7 K400_TCP_TSN_R152_8f Img11K_1K_R152_GCP log
TCPNet TSN R50 16f 73.9/91.2 75.8/92.1 K400_TCP_TSN_R50_16f Img1K_R50_GCP log
TCPNet TEA R50 16f 75.3/92.2 77.2/93.1 K400_TCP_TEA_R50_16f Img1K_Res2Net50_GCP log
TCPNet TSN R152 16f 77.2/93.1 79.3/94.0 K400_TCP_TSN_R152_16f Img11K_1K_R152_GCP TODO

Mini-Kinetics-200

Method Backbone frames 1 crop Acc (%) 30 views Acc (%) Model Pretrained Model
TCPNet TSN R50 8f 78.7 80.7 K200_TCP_TSN_8f K400_TCP_TSN_R50_8f

Environments

pytorch v1.0+(for TCP_TSN); v1.0~1.4(for TCP+TEA)

ffmpeg

graphviz pip install graphviz

tensorboard pip install tensorboardX

tqdm pip install tqdm

scikit-learn conda install scikit-learn

matplotlib conda install -c conda-forge matplotlib

fvcore pip install 'git+https://github.com/facebookresearch/fvcore'

Dataset Preparation

We provide a detailed dataset preparation guideline for Kinetics-400 and Mini-Kinetics-200. See Dataset preparation.

StartUp

  1. download the pretrained model and put it in pretrained_models/
  2. execute the training script file e.g.: sh script/K400/train_TCP_TSN_8f_R50.sh
  3. execute the inference script file e.g.: sh script/K400/test_TCP_TSN_R50_8f.sh

TCP Code


├── ops
|    ├── TCP
|    |   ├── TCP_module.py
|    |   ├── TCP_att_module.py
|    |   ├── TSA.py
|    |   └── TCA.py
|    ├ ...
├ ...

Acknowledgement

  • We thank TSM for providing well-designed 2D action recognition toolbox.
  • We also refer to some functions from iSQRT, TEA and Non-local.
  • Mini-K200 dataset samplling strategy follows Mini_K200.
  • We would like to thank Facebook for developing pytorch toolbox.

Thanks for their work!

Owner
Zilin Gao
Zilin Gao
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"

Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa

Matthew A Johnson 133 Dec 26, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022