TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Overview

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

This is an implementation of TCPNet.

arch

Introduction

For video recognition task, a global representation summarizing the whole contents of the video snippets plays an important role for the final performance. However, existing video architectures usually generate it by using a simple, global average pooling (GAP) method, which has limited ability to capture complex dynamics of videos. For image recognition task, there exist evidences showing that covariance pooling has stronger representation ability than GAP. Unfortunately, such plain covariance pooling used in image recognition is an orderless representative, which cannot model spatio-temporal structure inherent in videos. Therefore, this paper proposes a Temporal-attentive Covariance Pooling (TCP), inserted at the end of deep architectures, to produce powerful video representations. Specifi- cally, our TCP first develops a temporal attention module to adaptively calibrate spatio-temporal features for the succeeding covariance pooling, approximatively producing attentive covariance representations. Then, a temporal covariance pooling performs temporal pooling of the attentive covariance representations to char- acterize both intra-frame correlations and inter-frame cross-correlations of the calibrated features. As such, the proposed TCP can capture complex temporal dynamics. Finally, a fast matrix power normalization is introduced to exploit geometry of covariance representations. Note that our TCP is model-agnostic and can be flexibly integrated into any video architectures, resulting in TCPNet for effective video recognition. The extensive experiments on six benchmarks (e.g., Kinetics, Something-Something V1 and Charades) using various video architectures show our TCPNet is clearly superior to its counterparts, while having strong generalization ability.

Citation

@InProceedings{Gao_2021_TCP,
                author = {Zilin, Gao and Qilong, Wang and Bingbing, Zhang and Qinghua, Hu and Peihua, Li},
                title = {Temporal-attentive Covariance Pooling Networks for Video Recognition},
                booktitle = {arxiv preprint axXiv:2021.06xxx},
                year = {2021}
  }

Model Zoo

Kinetics-400

Method Backbone frames 1 crop Acc (%) 30 views Acc (%) Model Pretrained Model test log
TCPNet TSN R50 8f 72.4/90.4 75.3/91.8 K400_TCP_TSN_R50_8f Img1K_R50_GCP log
TCPNet TEA R50 8f 73.9/91.6 76.8/92.9 K400_TCP_TEA_R50_8f Img1K_Res2Net50_GCP log
TCPNet TSN R152 8f 75.7/92.2 78.3/93.7 K400_TCP_TSN_R152_8f Img11K_1K_R152_GCP log
TCPNet TSN R50 16f 73.9/91.2 75.8/92.1 K400_TCP_TSN_R50_16f Img1K_R50_GCP log
TCPNet TEA R50 16f 75.3/92.2 77.2/93.1 K400_TCP_TEA_R50_16f Img1K_Res2Net50_GCP log
TCPNet TSN R152 16f 77.2/93.1 79.3/94.0 K400_TCP_TSN_R152_16f Img11K_1K_R152_GCP TODO

Mini-Kinetics-200

Method Backbone frames 1 crop Acc (%) 30 views Acc (%) Model Pretrained Model
TCPNet TSN R50 8f 78.7 80.7 K200_TCP_TSN_8f K400_TCP_TSN_R50_8f

Environments

pytorch v1.0+(for TCP_TSN); v1.0~1.4(for TCP+TEA)

ffmpeg

graphviz pip install graphviz

tensorboard pip install tensorboardX

tqdm pip install tqdm

scikit-learn conda install scikit-learn

matplotlib conda install -c conda-forge matplotlib

fvcore pip install 'git+https://github.com/facebookresearch/fvcore'

Dataset Preparation

We provide a detailed dataset preparation guideline for Kinetics-400 and Mini-Kinetics-200. See Dataset preparation.

StartUp

  1. download the pretrained model and put it in pretrained_models/
  2. execute the training script file e.g.: sh script/K400/train_TCP_TSN_8f_R50.sh
  3. execute the inference script file e.g.: sh script/K400/test_TCP_TSN_R50_8f.sh

TCP Code


├── ops
|    ├── TCP
|    |   ├── TCP_module.py
|    |   ├── TCP_att_module.py
|    |   ├── TSA.py
|    |   └── TCA.py
|    ├ ...
├ ...

Acknowledgement

  • We thank TSM for providing well-designed 2D action recognition toolbox.
  • We also refer to some functions from iSQRT, TEA and Non-local.
  • Mini-K200 dataset samplling strategy follows Mini_K200.
  • We would like to thank Facebook for developing pytorch toolbox.

Thanks for their work!

Owner
Zilin Gao
Zilin Gao
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO) Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Prior

165 Dec 19, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022