TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Overview

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

This is an implementation of TCPNet.

arch

Introduction

For video recognition task, a global representation summarizing the whole contents of the video snippets plays an important role for the final performance. However, existing video architectures usually generate it by using a simple, global average pooling (GAP) method, which has limited ability to capture complex dynamics of videos. For image recognition task, there exist evidences showing that covariance pooling has stronger representation ability than GAP. Unfortunately, such plain covariance pooling used in image recognition is an orderless representative, which cannot model spatio-temporal structure inherent in videos. Therefore, this paper proposes a Temporal-attentive Covariance Pooling (TCP), inserted at the end of deep architectures, to produce powerful video representations. Specifi- cally, our TCP first develops a temporal attention module to adaptively calibrate spatio-temporal features for the succeeding covariance pooling, approximatively producing attentive covariance representations. Then, a temporal covariance pooling performs temporal pooling of the attentive covariance representations to char- acterize both intra-frame correlations and inter-frame cross-correlations of the calibrated features. As such, the proposed TCP can capture complex temporal dynamics. Finally, a fast matrix power normalization is introduced to exploit geometry of covariance representations. Note that our TCP is model-agnostic and can be flexibly integrated into any video architectures, resulting in TCPNet for effective video recognition. The extensive experiments on six benchmarks (e.g., Kinetics, Something-Something V1 and Charades) using various video architectures show our TCPNet is clearly superior to its counterparts, while having strong generalization ability.

Citation

@InProceedings{Gao_2021_TCP,
                author = {Zilin, Gao and Qilong, Wang and Bingbing, Zhang and Qinghua, Hu and Peihua, Li},
                title = {Temporal-attentive Covariance Pooling Networks for Video Recognition},
                booktitle = {arxiv preprint axXiv:2021.06xxx},
                year = {2021}
  }

Model Zoo

Kinetics-400

Method Backbone frames 1 crop Acc (%) 30 views Acc (%) Model Pretrained Model test log
TCPNet TSN R50 8f 72.4/90.4 75.3/91.8 K400_TCP_TSN_R50_8f Img1K_R50_GCP log
TCPNet TEA R50 8f 73.9/91.6 76.8/92.9 K400_TCP_TEA_R50_8f Img1K_Res2Net50_GCP log
TCPNet TSN R152 8f 75.7/92.2 78.3/93.7 K400_TCP_TSN_R152_8f Img11K_1K_R152_GCP log
TCPNet TSN R50 16f 73.9/91.2 75.8/92.1 K400_TCP_TSN_R50_16f Img1K_R50_GCP log
TCPNet TEA R50 16f 75.3/92.2 77.2/93.1 K400_TCP_TEA_R50_16f Img1K_Res2Net50_GCP log
TCPNet TSN R152 16f 77.2/93.1 79.3/94.0 K400_TCP_TSN_R152_16f Img11K_1K_R152_GCP TODO

Mini-Kinetics-200

Method Backbone frames 1 crop Acc (%) 30 views Acc (%) Model Pretrained Model
TCPNet TSN R50 8f 78.7 80.7 K200_TCP_TSN_8f K400_TCP_TSN_R50_8f

Environments

pytorch v1.0+(for TCP_TSN); v1.0~1.4(for TCP+TEA)

ffmpeg

graphviz pip install graphviz

tensorboard pip install tensorboardX

tqdm pip install tqdm

scikit-learn conda install scikit-learn

matplotlib conda install -c conda-forge matplotlib

fvcore pip install 'git+https://github.com/facebookresearch/fvcore'

Dataset Preparation

We provide a detailed dataset preparation guideline for Kinetics-400 and Mini-Kinetics-200. See Dataset preparation.

StartUp

  1. download the pretrained model and put it in pretrained_models/
  2. execute the training script file e.g.: sh script/K400/train_TCP_TSN_8f_R50.sh
  3. execute the inference script file e.g.: sh script/K400/test_TCP_TSN_R50_8f.sh

TCP Code


├── ops
|    ├── TCP
|    |   ├── TCP_module.py
|    |   ├── TCP_att_module.py
|    |   ├── TSA.py
|    |   └── TCA.py
|    ├ ...
├ ...

Acknowledgement

  • We thank TSM for providing well-designed 2D action recognition toolbox.
  • We also refer to some functions from iSQRT, TEA and Non-local.
  • Mini-K200 dataset samplling strategy follows Mini_K200.
  • We would like to thank Facebook for developing pytorch toolbox.

Thanks for their work!

Owner
Zilin Gao
Zilin Gao
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
A collection of easy-to-use, ready-to-use, interesting deep neural network models

Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un

Aria Ghora Prabono 16 Jun 16, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022