Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

Related tags

Deep LearningARAPReg
Overview

ARAPReg

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

Installation

The code is developed using Python 3.6 and cuda 10.2 on Ubuntu 18.04.

Note that Pytorch and Pytorch Geometric versions might change with your cuda version.

Data Preparation

We provide data for 3 datasets: DFAUST, SMAL and Bone dataset.

DFAUST

We use 4264 test shapes and 32933 training shapes from DFaust dataset. You can download the dataset here. Please place dfaust.zip in data/DFaust/raw/.

SMAL

We use 400 shapes from the family 0 in SMAL dataset. We generate shapes by the SMAL demo where the mean and the variance of the pose vectors are set to 0 and 0.2. We split them to 300 training and 100 testing samples.

You can download the generated dataset here. After downloading, please move the downloaded smal.zip to ./data/SMAL/raw.

Bone

We created a conventional bone dataset with 4 categories: tibia, pelvis, scapula and femur. Each category has about 50 shapes. We split them to 40 training and 10 testing samples. You can download the dataset here. After downloading, please move bone.zip to ./data then extract it.

Testing

Pretrained checkpoints

You can find pre-trained models and training logs in the following paths:

DFAUST: checkpoints.zip. Uncompress it under repository root will place two checkpoints in DFaust/out/arap/checkpoints/ and DFaust/out/arap/test_checkpoints/.

SMAL: smal_ckpt.zip. Move it to ./work_dir/SMAL/out, then extract it.

Bone: bone_ckpt.zip. Move it to ./work_dir, then extract it. It contains checkpoints for 4 bone categories.

Run testing

After putting pre-trained checkpoints to their corresponding paths, you can run the following scripts to optimize latent vectors for shape reconstruction. Note that our model has the auto-decoder architecture, so there's still a latent vector training stage for testing shapes.

Note that both SMAL and Bone checkpoints were trained on a single GPU. Please keep args.distributed False in main.py. In your own training, you can use multiple GPUs.

DFAUST:

bash test_dfaust.sh

SMAL:

bash test_smal.sh

Bone:

bash test_smal.sh

Note that for bone dataset, we train and test 4 categories seperately. Currently there's tibia in the training and testing script. You can replace it with femur, pelvis or scapula to get results for other 3 categories.

Model training

To retrain our model, run the following scripts after downloading and extracting datasets.

DFAUST: Note that on DFaust, it is preferred to have multiple GPUs for better efficiency. The script on DFaust tracks the reconstruction error to avoid over-fitting.

bash train_and_test_dfaust.sh

SMAL:

bash train_smal.sh

Bone:

bash train_bone.sh

Train on a new dataset

Data preprocessing and loading scripts are in ./datasets. To train on a new dataset, please write data loading file similar to ./datasets/dfaust.py. Then add the dataset to ./datasets/meshdata.py and main.py. Finally you can write a similar training script like train_and_test_dfaust.sh.

Owner
Bo Sun
CS Ph.D. student at UT Austin. Email: [email protected]
Bo Sun
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN â € A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022