Image morphing without reference points by applying warp maps and optimizing over them.

Overview

Differentiable Morphing

Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing is machine learning algorithm that can morph any two images without reference points. It called "differentiable morphing" because neural network here is not used in traditional data to label mapping sense, but as an easy way to solve optimization problem where one image is mapped to another via warp maps that are found by gradient descent. So after maps are found there is no need for the network itself.

Results

example 1 example 2 example 3

Dependencies

Tensorflow 2.1.3 and above.

Usage

Install proper dependencies:

pip install -r requirements.txt

Use the program:

morph.py -s images/img_1.jpg -t images/img_2.jpg

-s Source file
-t Target file

Unnecessary parameters:
-e Number of epochs to train maps on training stage
-a Addition map multiplier
-m Multiplication map multiplier
-w Warp map multiplier
-add_first If true add map would be applied to the source image before mult map. (might work better in some cases)

Idea

Suppose we want to produce one image from another in a way that we use as much useful information as possible, so if two given images share any similarities between them we make use of these similarities.

toy_example

After several trials I found out that the best way to achieve such effect is to use following formula.

formula

Here "Mult map" removes unnecessary parts of an image and shifts color balance, "Add map" creates new colors that are not present in original image and "Warp map" distort an image in some way to reproduce shifting, rotation and scaling of objects. W operation is dense_image_warp method that present in tensorflow and usually used for optical flow estimation tasks.

All maps are found by gradient descent using very simple convolution network. Now, by applying alpha scaling parameter to every map we will get smooth transition from one image to another without any loss of useful data (at least for the given toy example).

transition

Thoughts

Notice that all maps produced generate somewhat meaningful interpolation without any understanding of what exactly present in the images. That means that warp operation might be very useful in images processing tasks. In some sense warp operation might be thought as long range convolution, because it can "grab" data from any point of an image and reshape it in some useful way. Therefore it might be beneficial to use warp operation in classification tasks and might allow networks be less susceptible to small perturbations of the data. But especially, it should be beneficial to use in generation task. It should be much easier to produce new data by combining and perturbating several examples of known data points than to learn a function that represents all data points at ones.

Owner
Alex K
Russian self-taught programmer. Interested in art, procedural generation and generative AI.
Alex K
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022