Weakly Supervised Learning of Rigid 3D Scene Flow

Overview

Weakly Supervised Learning of Rigid 3D Scene Flow

This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D scene flow estimation. It represents the official implementation of the paper:

Weakly Supervised Learning of Rigid 3D Scene Flow

Zan Gojcic, Or Litany, Andreas Wieser, Leonidas J. Guibas, Tolga Birdal
| IGP ETH Zurich | Nvidia Toronto AI Lab | Guibas Lab Stanford University |

For more information, please see the project webpage

WSR3DSF

Environment Setup

Note: the code in this repo has been tested on Ubuntu 16.04/20.04 with Python 3.7, CUDA 10.1/10.2, PyTorch 1.7.1 and MinkowskiEngine 0.5.1. It may work for other setups, but has not been tested.

Before proceding, make sure CUDA is installed and set up correctly.

After cloning this reposiory you can proceed by setting up and activating a virual environment with Python 3.7. If you are using a different version of cuda (10.1) change the pytorch installation instruction accordingly.

export CXX=g++-7
conda config --append channels conda-forge
conda create --name rigid_3dsf python=3.7
source activate rigid_3dsf
conda install --file requirements.txt
conda install -c open3d-admin open3d=0.9.0.0
conda install -c intel scikit-learn
conda install pytorch==1.7.1 torchvision cudatoolkit=10.1 -c pytorch

You can then proceed and install MinkowskiEngine library for sparse tensors:

pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps

Our repository also includes a pytorch implementation of Chamfer Distance in ./utils/chamfer_distance which will be compiled on the first run.

In order to test if Pytorch and MinkwoskiEngine are installed correctly please run

python -c "import torch, MinkowskiEngine"

which should run without an error message.

Data

We provide the preprocessed data of flying_things_3d (108GB), stereo_kitti (500MB), lidar_kitti (~160MB), semantic_kitti (78GB), and waymo_open (50GB) used for training and evaluating our model.

To download a single dataset please run:

bash ./scripts/download_data.sh name_of_the_dataset

To download all datasets simply run:

bash ./scripts/download_data.sh

The data will be downloaded and extracted to ./data/name_of_the_dataset/.

Pretrained models

We provide the checkpoints of the models trained on flying_things_3d or semantic_kitti, which we use in our main evaluations.

To download these models please run:

bash ./scripts/download_pretrained_models.sh

Additionally, we provide all the models used in the ablation studies and the model fine tuned on waymo_open.

To download these models please run:

bash ./scripts/download_pretrained_models_ablations.sh

All the models will be downloaded and extracted to ./logs/dataset_used_for_training/.

Evaluation with pretrained models

Our method with pretrained weights can be evaluated using the ./eval.py script. The configuration parameters of the evaluation can be set with the *.yaml configuration files located in ./configs/eval/. We provide a configuration file for each dataset used in our paper. For all evaluations please first download the pretrained weights and the corresponding data. Note, if the data or pretrained models are saved to a non-default path the config files also has to be adapted accordingly.

FlyingThings3D

To evaluate our backbone + scene flow head on FlyingThings3d please run:

python eval.py ./configs/eval/eval_flying_things_3d.yaml

This should recreate the results from the Table 1 of our paper (EPE3D: 0.052 m).

stereoKITTI

To evaluate our backbone + scene flow head on stereoKITTI please run:

python eval.py ./configs/eval/eval_stereo_kitti.yaml

This should again recreate the results from the Table 1 of our paper (EPE3D: 0.042 m).

lidarKITTI

To evaluate our full weakly supervised method on lidarKITTI please run:

python eval.py ./configs/eval/eval_lidar_kitti.yaml

This should recreate the results for Ours++ on lidarKITTI (w/o ground) from the Table 2 of our paper (EPE3D: 0.094 m). To recreate other results on lidarKITTI please change the ./configs/eval/eval_lidar_kitti.yaml file accordingly.

semanticKITTI

To evaluate our full weakly supervised method on semanticKITTI please run:

python eval.py ./configs/eval/eval_semantic_kitti.yaml

This should recreate the results of our full model on semanticKITTI (w/o ground) from the Table 4 of our paper. To recreate other results on semanticKITTI please change the ./configs/eval/eval_semantic_kitti.yaml file accordingly.

waymo open

To evaluate our fine-tuned model on waymo open please run:

python eval.py ./configs/eval/eval_waymo_open.yaml

This should recreate the results for Ours++ (fine-tuned) from the Table 9 of the appendix. To recreate other results on waymo open please change the ./configs/eval/eval_waymo_open.yaml file accordingly.

Training our method from scratch

Our method can be trained using the ./train.py script. The configuration parameters of the training process can be set using the config files located in ./configs/train/.

Training our backbone with full supervision on FlyingThings3D

To train our backbone network and scene flow head under full supervision (corresponds to Sec. 4.3 of our paper) please run:

python train.py ./configs/train/train_fully_supervised.yaml

The checkpoints and tensorboard data will be saved to ./logs/logs_FlyingThings3D_ME. If you run out of GPU memory with the default setting please adapt the batch_size and acc_iter_size in the ./configs/default.yaml to e.g. 4 and 2, respectively.

Training under weak supervision on semanticKITTI

To train our full method under weak supervision on semanticKITTI please run

python train.py ./configs/train/train_weakly_supervised.yaml

The checkpoints and tensorboard data will be saved to ./logs/logs_SemanticKITTI_ME. If you run out of GPU memory with the default setting please adapt the batch_size and acc_iter_size in the ./configs/default.yaml to e.g. 4 and 2, respectively.

Citation

If you found this code or paper useful, please consider citing:

@misc{gojcic2021weakly3dsf,
        title = {Weakly {S}upervised {L}earning of {R}igid {3D} {S}cene {F}low}, 
        author = {Gojcic, Zan and Litany, Or and Wieser, Andreas and Guibas, Leonidas J and Birdal, Tolga},
        year = {2021},
        eprint={2102.08945},
        archivePrefix={arXiv},
        primaryClass={cs.CV}
        }

Contact

If you run into any problems or have questions, please create an issue or contact Zan Gojcic.

Acknowledgments

In this project we use parts of the official implementations of:

We thank the respective authors for open sourcing their methods.

Owner
Zan Gojcic
Zan Gojcic
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022