PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

Overview

DosGAN-PyTorch

PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

Dependency:

Python 2.7

PyTorch 0.4.0

Usage:

Multiple identity translation

  1. Downloading Facescrub dataset following http://www.vintage.winklerbros.net/facescrub.html, and save it to root_dir.

  2. Splitting training and testing sets into train_dir and val_dir:

    $ python split2train_val.py root_dir train_dir val_dir

  3. Train a classifier for domain feature extraction and save it to dosgan_cls:

    $ python main_dosgan.py --mode cls --model_dir dosgan_cls --train_data_path train_dir --test_data_path val_dir

  4. Train DosGAN:

    $ python main_dosgan.py --mode train --model_dir dosgan --cls_save_dir dosgan_cls/models --train_data_path train_dir --test_data_path val_dir

  5. Train DosGAN-c:

    $ python main_dosgan.py --mode train --model_dir dosgan_c --cls_save_dir dosgan_cls/models --non_conditional false --train_data_path train_dir --test_data_path val_dir

  6. Test DosGAN:

    $ python main_dosgan.py --mode test --model_dir dosgan_c --cls_save_dir dosgan_cls/models --train_data_path train_dir --test_data_path val_dir

  7. Test DosGAN-c:

    $ python main_dosgan.py --mode test --model_dir dosgan_c --cls_save_dir dosgan_cls/models --non_conditional false --train_data_path train_dir --test_data_path val_dir

Other mutliple domain translation

  1. For other kinds of dataset, you can place train set and test set like:

    data
    ├── YOUR_DATASET_train_dir
        ├── damain1
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ├── domain2
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ├── domain3
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ...
    
    data
    ├── YOUR_DATASET_val_dir
        ├── damain1
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ├── domain2
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ├── domain3
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ...
    
  2. Giving multiple season translation for example (season dataset). Train a classifier for season domain feature extraction and save it to dosgan_season_cls:

    $ python main_dosgan.py --mode cls --model_dir dosgan_season_cls --ft_num 64 --c_dim 4 --image_size 256 --train_data_path season_train_dir --test_data_path season_val_dir

  3. Train DosGAN for multiple season translation:

    $ python main_dosgan.py --mode train --model_dir dosgan_season --cls_save_dir dosgan_season_cls/models --ft_num 64 --c_dim 4 --image_size 256 --lambda_fs 0.15 --num_iters 300000 --train_data_path season_train_dir --test_data_path season_val_dir

Results:

1. Multiple identity translation

# Results of DosGAN:

# Results of DosGAN-c:

2. Multiple season translation:

Owner
Ph.D. Candidate of University of Science and Technology of China
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022