Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

Overview

🦩 Flamingo - Pytorch

Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the perceiver resampler (including the scheme where the learned queries contributes keys / values to be attended to, in addition to media embeddings), the specialized masked cross attention blocks, and finally the tanh gating at the ends of the cross attention + corresponding feedforward blocks

Install

$ pip install flamingo-pytorch

Usage

import torch
from flamingo_pytorch import PerceiverResampler

perceive = PerceiverResampler(
    dim = 1024,
    depth = 2,
    dim_head = 64,
    heads = 8,
    num_latents = 64,    # the number of latents to shrink your media sequence to, perceiver style
    num_time_embeds = 4  # say you have 4 images maximum in your dialogue
)

medias = torch.randn(1, 2, 256, 1024) # (batch, time, sequence length, dimension)
perceived = perceive(medias) # (1, 2, 64, 1024) - (batch, time, num latents, dimension)

Then you insert the GatedCrossAttentionBlock at different intervals in your giant language model. Your text would then attend to the perceived media from above

The recommended way to derive the media_locations boolean tensor would be to allocate a special token id to the media, and then, at the start of your large language model, do media_locations = text_id == media_token_id

import torch
from flamingo_pytorch import GatedCrossAttentionBlock

cross_attn = GatedCrossAttentionBlock(
    dim = 1024,
    dim_head = 64,
    heads = 8
)

text = torch.randn(1, 512, 1024)
perceived = torch.randn(1, 2, 64, 1024)

media_locations = torch.randint(0, 2, (1, 512)).bool()

text = cross_attn(
    text,
    perceived,
    media_locations = media_locations
)

That's it!

Attention is all you need.

Full working example with Flamingo + PaLM 🌴 🦩 🌴

Integration with PaLM

First install vit-pytorch for the vision encoder

$ pip install vit-pytorch

Then

from vit_pytorch.vit import ViT
from vit_pytorch.extractor import Extractor

vit = ViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 1024,
    depth = 6,
    heads = 16,
    mlp_dim = 2048,
    dropout = 0.1,
    emb_dropout = 0.1
)

vit = Extractor(vit, return_embeddings_only = True)

# first take your trained image encoder and wrap it in an adapter that returns the image embeddings
# here we use the ViT from the vit-pytorch library

import torch
from flamingo_pytorch import FlamingoPaLM

# a PaLM language model, the 540 billion parameter model from google that shows signs of general intelligence

flamingo_palm = FlamingoPaLM(
    num_tokens = 20000,          # number of tokens
    dim = 1024,                  # dimensions
    depth = 12,                  # depth
    heads = 8,                   # attention heads
    dim_head = 64,               # dimension per attention head
    img_encoder = vit,           # plugin your image encoder (this can be optional if you pass in the image embeddings separately, but probably want to train end to end given the perceiver resampler)
    media_token_id = 3,          # the token id representing the [media] or [image]
    cross_attn_every = 3,        # how often to cross attend
    perceiver_num_latents = 64,  # perceiver number of latents, should be smaller than the sequence length of the image tokens
    perceiver_depth = 2          # perceiver resampler depth
)

# train your PaLM as usual

text = torch.randint(0, 20000, (2, 512))

palm_logits = flamingo_palm(text)

# after much training off the regular PaLM logits
# now you are ready to train Flamingo + PaLM
# by passing in images, it automatically freezes everything but the perceiver and cross attention blocks, as in the paper

dialogue = torch.randint(0, 20000, (4, 512))
images = torch.randn(4, 2, 3, 256, 256)

flamingo_logits = flamingo_palm(dialogue, images)

# do your usual cross entropy loss

It is quite evident where this is all headed if you think beyond just images.

Inception

For factual correctness, just imagine where this system would stand if one were to use a state of the art retrieval language model as the base.

Citations

@article{Alayrac2022Flamingo,
    title   = {Flamingo: a Visual Language Model for Few-Shot Learning},
    author  = {Jean-Baptiste Alayrac et al},
    year    = {2022}
}
@inproceedings{Chowdhery2022PaLMSL,
    title   = {PaLM: Scaling Language Modeling with Pathways},
    author  = {Aakanksha Chowdhery and Sharan Narang and Jacob Devlin and Maarten Bosma and Gaurav Mishra and Adam Roberts and Paul Barham and Hyung Won Chung and Charles Sutton and Sebastian Gehrmann and Parker Schuh and Kensen Shi and Sasha Tsvyashchenko and Joshua Maynez and Abhishek Rao and Parker Barnes and Yi Tay and Noam M. Shazeer and Vinodkumar Prabhakaran and Emily Reif and Nan Du and Benton C. Hutchinson and Reiner Pope and James Bradbury and Jacob Austin and Michael Isard and Guy Gur-Ari and Pengcheng Yin and Toju Duke and Anselm Levskaya and Sanjay Ghemawat and Sunipa Dev and Henryk Michalewski and Xavier Garc{\'i}a and Vedant Misra and Kevin Robinson and Liam Fedus and Denny Zhou and Daphne Ippolito and David Luan and Hyeontaek Lim and Barret Zoph and Alexander Spiridonov and Ryan Sepassi and David Dohan and Shivani Agrawal and Mark Omernick and Andrew M. Dai and Thanumalayan Sankaranarayana Pillai and Marie Pellat and Aitor Lewkowycz and Erica Oliveira Moreira and Rewon Child and Oleksandr Polozov and Katherine Lee and Zongwei Zhou and Xuezhi Wang and Brennan Saeta and Mark Diaz and Orhan Firat and Michele Catasta and Jason Wei and Kathleen S. Meier-Hellstern and Douglas Eck and Jeff Dean and Slav Petrov and Noah Fiedel},
    year    = {2022}
}
Comments
  • PerceiverResampler missing some LayerNorms?

    PerceiverResampler missing some LayerNorms?

    Hey, it feels like PerceiverResampler is missing some LayerNorms? it seems to me we should layer-norm x before sending to attentions loop, and may be add layer-norm to ff(latents) + latents?

    opened by inspirit 7
  • Missing flatten op in PerceiverResampler?

    Missing flatten op in PerceiverResampler?

    Hi, It seems that Flamingo did "x_f = flatten(x_f) # [T, S, d] -> [T * S, d]" (batch size == 1) before putting x_f to attention.

    So, it should be like: medias = torch.randn(1, 2, 256, 1024) # (batch, time, sequence length, dimension) perceived = perceive(medias) # (1, 64, 1024) - (batch, num latents, dimension)

    ??

    opened by zengyan-97 6
  • wrong attention masks?

    wrong attention masks?

    https://github.com/lucidrains/flamingo-pytorch/blob/44920f4191ba3c280ff84c6ebc76025656d1dab5/flamingo_pytorch/flamingo_pytorch.py#L159

    In the flamingo paper, the language features in the gated cross-attention layers only attend to the visual features from the immediate preceding image. I believe your attention masks are created in such a way that they attend to the visual features from all preceding images. Can you confirm? If so, a fix would be to simply change the '>=' to '=='.

    opened by dhansmair 4
  • zeroing out attention not working

    zeroing out attention not working

    https://github.com/lucidrains/flamingo-pytorch/blob/749f8244794002371913d2fc4e7411afd5eddc67/flamingo_pytorch/flamingo_pytorch.py#L179

    you are not using the inplace version of the function: https://pytorch.org/docs/stable/generated/torch.Tensor.masked_fill_.html#torch.Tensor.masked_fill_

    so I think this line does not have an effect.

    Best, David

    opened by dhansmair 2
  • Applying parallel attn with ff to existing pretrained model?

    Applying parallel attn with ff to existing pretrained model?

    Hi - awesome work! I am trying to understand ? I couldn't find a paper - only a reference to https://github.com/kingoflolz/mesh-transformer-jax. Is this right? Am I understanding that it is bascially applying multiple operations of for qkv and ff at once? Is it possible to use this trick to modify an existing pretrained model?

    https://github.com/lucidrains/flamingo-pytorch/blob/749f8244794002371913d2fc4e7411afd5eddc67/flamingo_pytorch/flamingo_palm.py#L90

    Many thanks in advance!

    Huu

    opened by ontocord 1
  • How to use Flamingo for VQA task?

    How to use Flamingo for VQA task?

    Hi, Thanks for sharing this awesome implementation. I am very interested in using Flamingo model for my usecase. How I can use this implementation to get inference on my dataset for VQA task? I have certain images of products and want extract some information image of product by questioning it. How I can do it ?

    Please help.

    thanks

    opened by karndeepsingh 0
  • Fine-tuning of a model

    Fine-tuning of a model

    Hi, Thank you for this great work. I want to ask how can I fine-tune this model on my dataset for some downstream task like image captioning or image classification? If it is possible for you can you also please share the code?

    opened by ans92 0
  • Need a sample ipython notebook

    Need a sample ipython notebook

    Hello, @lucidrains,

    Thank you for providing this.

    For demo purposes, could you please provide a sample demo in Jupyter notebook?🫠

    Best, LITDataScience

    opened by LITDataScience 0
Releases(0.1.2)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023