Decorators for maximizing memory utilization with PyTorch & CUDA

Overview

torch-max-mem

Tests Cookiecutter template from @cthoyt PyPI PyPI - Python Version PyPI - License Documentation Status Code style: black

This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and applying successive halving until no more out-of-memory exception occurs.

💪 Getting Started

Assume you have a function for batched computation of nearest neighbors using brute-force distance calculation.

import torch

def knn(x, y, batch_size, k: int = 3):
    return torch.cat(
        [
            torch.cdist(x[start : start + batch_size], y).topk(k=k, dim=1, largest=False).indices
            for start in range(0, x.shape[0], batch_size)
        ],
        dim=0,
    )

With torch_max_mem you can decorate this function to reduce the batch size until no more out-of-memory error occurs.

import torch
from torch_max_mem import maximize_memory_utilization


@maximize_memory_utilization(parameter_name="batch_size")
def knn(x, y, batch_size, k: int = 3):
    return torch.cat(
        [
            torch.cdist(x[start : start + batch_size], y).topk(k=k, dim=0, largest=False).indices
            for start in range(0, x.shape[0], batch_size)
        ],
        dim=0,
    )

In the code, you can now always pass the largest sensible batch size, e.g.,

x = torch.rand(100, 100, device="cuda")
y = torch.rand(200, 100, device="cuda")
knn(x, y, batch_size=x.shape[0])

🚀 Installation

The most recent release can be installed from PyPI with:

$ pip install torch_max_mem

The most recent code and data can be installed directly from GitHub with:

$ pip install git+https://github.com/mberr/torch-max-mem.git

To install in development mode, use the following:

$ git clone git+https://github.com/mberr/torch-max-mem.git
$ cd torch-max-mem
$ pip install -e .

👐 Contributing

Contributions, whether filing an issue, making a pull request, or forking, are appreciated. See CONTRIBUTING.md for more information on getting involved.

👋 Attribution

Parts of the logic have been developed with Laurent Vermue for PyKEEN.

⚖️ License

The code in this package is licensed under the MIT License.

🍪 Cookiecutter

This package was created with @audreyfeldroy's cookiecutter package using @cthoyt's cookiecutter-snekpack template.

🛠️ For Developers

See developer instrutions

The final section of the README is for if you want to get involved by making a code contribution.

🥼 Testing

After cloning the repository and installing tox with pip install tox, the unit tests in the tests/ folder can be run reproducibly with:

$ tox

Additionally, these tests are automatically re-run with each commit in a GitHub Action.

📖 Building the Documentation

$ tox -e docs

📦 Making a Release

After installing the package in development mode and installing tox with pip install tox, the commands for making a new release are contained within the finish environment in tox.ini. Run the following from the shell:

$ tox -e finish

This script does the following:

  1. Uses Bump2Version to switch the version number in the setup.cfg and src/torch_max_mem/version.py to not have the -dev suffix
  2. Packages the code in both a tar archive and a wheel
  3. Uploads to PyPI using twine. Be sure to have a .pypirc file configured to avoid the need for manual input at this step
  4. Push to GitHub. You'll need to make a release going with the commit where the version was bumped.
  5. Bump the version to the next patch. If you made big changes and want to bump the version by minor, you can use tox -e bumpversion minor after.
You might also like...
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We have upgraded the point cloud modules of SPH3D-GCN from homogeneous to heterogeneous representations, and included the upgraded modules into this latest work as well. We are happy to announce that the work is accepted to IEEE CVPR2021.

This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

Comments
  • Import error

    Import error

    When trying to run the example from the README, I currently get the following error

    Traceback (most recent call last):
      File ".../torch_max_mem/tmp.py", line 2, in <module>
        from torch_max_mem import maximize_memory_utilization
    ModuleNotFoundError: No module named 'torch_max_mem'
    

    When I check pip list, the package name appears to be the stylized name

    $ pip list | grep max
    torch-max-mem     0.0.1.dev0 .../torch_max_mem/src
    
    opened by mberr 2
  • Add simplified key hasher

    Add simplified key hasher

    This PR adds a simplification for creating hashers based on the values associated to a subse of keys without having to define a lambda or named function.

    opened by mberr 1
  • Code fails for KEYWORD_ONLY params

    Code fails for KEYWORD_ONLY params

    The following snippet

    from torch_max_mem import maximize_memory_utilization
    
    
    @maximize_memory_utilization()
    def func(a, *bs, batch_size: int):
        pass
    

    raises an error

    Traceback (most recent call last):
      File ".../tmp.py", line 5, in <module>
        def func(a, *bs, batch_size: int):
      File ".../venv/venv-cpu/lib/python3.8/site-packages/torch_max_mem/api.py", line 274, in __call__
        wrapped = maximize_memory_utilization_decorator(
      File ".../venv/venv-cpu/lib/python3.8/site-packages/torch_max_mem/api.py", line 150, in decorator_maximize_memory_utilization
        raise ValueError(f"{parameter_name} must be a keyword based parameter, but is {_parameter.kind}.")
    ValueError: batch_size must be a keyword based parameter, but is KEYWORD_ONLY.
    

    since _parameter.kind is KEYWORD_ONLY.

    This is overly restrictive, since we only need keyword-based parameters.

    opened by mberr 0
  • stateful decorator

    stateful decorator

    Add a decorator which remembers to maximum parameter value for next time. Since this is handled internally, we do not need to expose the found parameter value to the outside, leaving the method signature unchanged.

    opened by mberr 0
Releases(v0.0.4)
  • v0.0.4(Aug 18, 2022)

    What's Changed

    • Fix ad hoc key hashing by @mberr in https://github.com/mberr/torch-max-mem/pull/7
    • Fix default value handling by @mberr in https://github.com/mberr/torch-max-mem/pull/8

    Full Changelog: https://github.com/mberr/torch-max-mem/compare/v0.0.3...v0.0.4

    Source code(tar.gz)
    Source code(zip)
  • v0.0.3(Aug 18, 2022)

    What's Changed

    • Fix keyword only params by @mberr in https://github.com/mberr/torch-max-mem/pull/6

    Full Changelog: https://github.com/mberr/torch-max-mem/compare/v0.0.2...v0.0.3

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(May 6, 2022)

    What's Changed

    • Add simplified key hasher by @mberr in https://github.com/mberr/torch-max-mem/pull/3
    • Update README & doc by @mberr in https://github.com/mberr/torch-max-mem/pull/4

    Full Changelog: https://github.com/mberr/torch-max-mem/compare/v0.0.1...v0.0.2

    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Feb 1, 2022)

DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation withNoisy Multi-feedback"

Curriculum_disentangled_recommendation This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation with Noisy Multi-feedb

14 Dec 20, 2022
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022