This is an official implementation for "PlaneRecNet".

Overview

PlaneRecNet

This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wise planes and monocular depth estimation, and focus on the cross-task consistency between two branches. Network Architecture

Changing Logs

22th. Oct. 2021: Initial update, some trained models and data annotation will be uploaded very soon.

29th. Oct. 2021: Upload ResNet-50 based model.

3rd. Nov. 2021: Nice to know that "prn" or "PRN" is a forbiden name in Windows.

4th. Nov. 2021: For inference, input image will be resized to max(H, W) == cfg.max_size, and reserve the aspect ratio. Update enviroment.yml, so that newest GPU can run it as well.

Installation

Install environment:

  • Clone this repository and enter it:
git clone https://github.com/EryiXie/PlaneRecNet.git
cd PlaneRecNet
  • Set up the environment using one of the following methods:
    • Using Anaconda
      • Run conda env create -f environment.yml
    • Using Docker
      • dockerfile will come later...

Download trained model:

Here are our models (released on Oct 22th, 2021), which can reproduce the results in the paper:

Quantitative Results

All models below are trained with batch_size=8 and a single RTX3090 or a single RTXA6000 on the plane annotation for ScanNet dataset:

Image Size Backbone FPS Weights
480x640 Resnet50-DCN 19.1 PlaneRecNet_50
480x640 Resnet101-DCN 14.4 PlaneRecNet_101

Simple Inference

Inference with an single image(*.jpg or *.png format):

python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth  --image=data/example_nyu.jpg

Inference with images in a folder:

python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth --images=input_folder:output_folder

Inference with .mat files from iBims-1 Dataset:

python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth --ibims1=input_folder:output_folder

Then you will get segmentation and depth estimation results like these:

Qualititative Results

Training

PlaneRecNet is trained on ScanNet with 100k samples on one single RTX 3090 with batch_size=8, it takes approximate 37 hours. Here are the data annotations(about 1.0 GB) for training of ScanNet datasets, which is based on the annotation given by PlaneRCNN and converted into json file. Please not that, our training sample is not same as PlaneRCNN, because we don't have their training split at hand.

Please notice, the pathing and naming rules in our data/dataset.py, is not compatable with the raw data extracted with the ScanNetv2 original code. Please refer to this issue for fixing tips, thanks uyoung-jeong for that. I will add the data preprocessing script to fix this, once I have time.

Of course, please download ScanNet too for rgb image, depth image and camera intrinsic etc.. The annotation file we provide only contains paths for images and camera intrinsic and the ground truth of piece-wise plane instance and its plane parameters.

  • To train, grab an imagenet-pretrained model and put it in ./weights.
    • For Resnet101, download resnet101_reducedfc.pth from here.
    • For Resnet50, download resnet50-19c8e357.pth from here.
  • Run one of the training commands below.
    • Press ctrl+c while training and it will save an *_interrupt.pth file at the current iteration.
    • All weights are saved in the ./weights directory by default with the file name <config>_<epoch>_<iter>.pth.

Trains PlaneRecNet_101_config with a batch_size of 8.

python3 train.py --config=PlaneRecNet_101_config --batch_size=8

Trains PlaneRecNet, without writing any logs to tensorboard.

python3 train.py --config=PlaneRecNet_101_config --batch_size=8 --no_tensorboard

Run Tensorboard on local dir "./logs" to check the visualization. So far we provide loss recording and image sample visualization, may consider to add more (22.Oct.2021).

tenosrborad --logdir /log/folder/

Resume training PlaneRecNet with a specific weight file and start from the iteration specified in the weight file's name.

python3 train.py --config=PlaneRecNet_101_config --resume=weights/PlaneRecNet_101_X_XXXXX.pth

Use the help option to see a description of all available command line arguments.

python3 train.py --help

Multi-GPU Support

We adapted the Multi-GPU support from YOLACT, as well as the introduction of how to use it as follow:

  • Put CUDA_VISIBLE_DEVICES=[gpus] on the beginning of the training command.
    • Where you should replace [gpus] with a comma separated list of the index of each GPU you want to use (e.g., 0,1,2,3).
    • You should still do this if only using 1 GPU.
    • You can check the indices of your GPUs with nvidia-smi.
  • Then, simply set the batch size to 8*num_gpus with the training commands above. The training script will automatically scale the hyperparameters to the right values.
    • If you have memory to spare you can increase the batch size further, but keep it a multiple of the number of GPUs you're using.
    • If you want to allocate the images per GPU specific for different GPUs, you can use --batch_alloc=[alloc] where [alloc] is a comma seprated list containing the number of images on each GPU. This must sum to batch_size.

Known Issues

  1. Userwarning of torch.max_pool2d. This has no real affect. It appears when using PyTorch 1.9. And it is claimed "fixed" for the nightly version of PyTorch.
UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
  1. Userwarning of leaking Caffe2 while training. This issues related to dataloader in PyTorch1.9, to avoid showing this warning, set pin_memory=False for dataloader. But you don't necessarily need to do this.
[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)

Citation

If you use PlaneRecNet or this code base in your work, please cite

@misc{xie2021planerecnet,
      title={PlaneRecNet: Multi-Task Learning with Cross-Task Consistency for Piece-Wise Plane Detection and Reconstruction from a Single RGB Image}, 
      author={Yaxu Xie and Fangwen Shu and Jason Rambach and Alain Pagani and Didier Stricker},
      year={2021},
      eprint={2110.11219},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

For questions about our paper or code, please contact Yaxu Xie, or take a good use at the Issues section of this repository.

Owner
yaxu
Oh, hamburgers!
yaxu
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
Sudoku solver - A sudoku solver with python

sudoku_solver A sudoku solver What is Sudoku? Sudoku (Japanese: 数独, romanized: s

Sikai Lu 0 May 22, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022