This is an official implementation for "PlaneRecNet".

Overview

PlaneRecNet

This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wise planes and monocular depth estimation, and focus on the cross-task consistency between two branches. Network Architecture

Changing Logs

22th. Oct. 2021: Initial update, some trained models and data annotation will be uploaded very soon.

29th. Oct. 2021: Upload ResNet-50 based model.

3rd. Nov. 2021: Nice to know that "prn" or "PRN" is a forbiden name in Windows.

4th. Nov. 2021: For inference, input image will be resized to max(H, W) == cfg.max_size, and reserve the aspect ratio. Update enviroment.yml, so that newest GPU can run it as well.

Installation

Install environment:

  • Clone this repository and enter it:
git clone https://github.com/EryiXie/PlaneRecNet.git
cd PlaneRecNet
  • Set up the environment using one of the following methods:
    • Using Anaconda
      • Run conda env create -f environment.yml
    • Using Docker
      • dockerfile will come later...

Download trained model:

Here are our models (released on Oct 22th, 2021), which can reproduce the results in the paper:

Quantitative Results

All models below are trained with batch_size=8 and a single RTX3090 or a single RTXA6000 on the plane annotation for ScanNet dataset:

Image Size Backbone FPS Weights
480x640 Resnet50-DCN 19.1 PlaneRecNet_50
480x640 Resnet101-DCN 14.4 PlaneRecNet_101

Simple Inference

Inference with an single image(*.jpg or *.png format):

python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth  --image=data/example_nyu.jpg

Inference with images in a folder:

python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth --images=input_folder:output_folder

Inference with .mat files from iBims-1 Dataset:

python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth --ibims1=input_folder:output_folder

Then you will get segmentation and depth estimation results like these:

Qualititative Results

Training

PlaneRecNet is trained on ScanNet with 100k samples on one single RTX 3090 with batch_size=8, it takes approximate 37 hours. Here are the data annotations(about 1.0 GB) for training of ScanNet datasets, which is based on the annotation given by PlaneRCNN and converted into json file. Please not that, our training sample is not same as PlaneRCNN, because we don't have their training split at hand.

Please notice, the pathing and naming rules in our data/dataset.py, is not compatable with the raw data extracted with the ScanNetv2 original code. Please refer to this issue for fixing tips, thanks uyoung-jeong for that. I will add the data preprocessing script to fix this, once I have time.

Of course, please download ScanNet too for rgb image, depth image and camera intrinsic etc.. The annotation file we provide only contains paths for images and camera intrinsic and the ground truth of piece-wise plane instance and its plane parameters.

  • To train, grab an imagenet-pretrained model and put it in ./weights.
    • For Resnet101, download resnet101_reducedfc.pth from here.
    • For Resnet50, download resnet50-19c8e357.pth from here.
  • Run one of the training commands below.
    • Press ctrl+c while training and it will save an *_interrupt.pth file at the current iteration.
    • All weights are saved in the ./weights directory by default with the file name <config>_<epoch>_<iter>.pth.

Trains PlaneRecNet_101_config with a batch_size of 8.

python3 train.py --config=PlaneRecNet_101_config --batch_size=8

Trains PlaneRecNet, without writing any logs to tensorboard.

python3 train.py --config=PlaneRecNet_101_config --batch_size=8 --no_tensorboard

Run Tensorboard on local dir "./logs" to check the visualization. So far we provide loss recording and image sample visualization, may consider to add more (22.Oct.2021).

tenosrborad --logdir /log/folder/

Resume training PlaneRecNet with a specific weight file and start from the iteration specified in the weight file's name.

python3 train.py --config=PlaneRecNet_101_config --resume=weights/PlaneRecNet_101_X_XXXXX.pth

Use the help option to see a description of all available command line arguments.

python3 train.py --help

Multi-GPU Support

We adapted the Multi-GPU support from YOLACT, as well as the introduction of how to use it as follow:

  • Put CUDA_VISIBLE_DEVICES=[gpus] on the beginning of the training command.
    • Where you should replace [gpus] with a comma separated list of the index of each GPU you want to use (e.g., 0,1,2,3).
    • You should still do this if only using 1 GPU.
    • You can check the indices of your GPUs with nvidia-smi.
  • Then, simply set the batch size to 8*num_gpus with the training commands above. The training script will automatically scale the hyperparameters to the right values.
    • If you have memory to spare you can increase the batch size further, but keep it a multiple of the number of GPUs you're using.
    • If you want to allocate the images per GPU specific for different GPUs, you can use --batch_alloc=[alloc] where [alloc] is a comma seprated list containing the number of images on each GPU. This must sum to batch_size.

Known Issues

  1. Userwarning of torch.max_pool2d. This has no real affect. It appears when using PyTorch 1.9. And it is claimed "fixed" for the nightly version of PyTorch.
UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
  1. Userwarning of leaking Caffe2 while training. This issues related to dataloader in PyTorch1.9, to avoid showing this warning, set pin_memory=False for dataloader. But you don't necessarily need to do this.
[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)

Citation

If you use PlaneRecNet or this code base in your work, please cite

@misc{xie2021planerecnet,
      title={PlaneRecNet: Multi-Task Learning with Cross-Task Consistency for Piece-Wise Plane Detection and Reconstruction from a Single RGB Image}, 
      author={Yaxu Xie and Fangwen Shu and Jason Rambach and Alain Pagani and Didier Stricker},
      year={2021},
      eprint={2110.11219},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

For questions about our paper or code, please contact Yaxu Xie, or take a good use at the Issues section of this repository.

Owner
yaxu
Oh, hamburgers!
yaxu
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Ian Covert 130 Jan 01, 2023
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Angle data is a simple data type.

angledat Angle data is a simple data type. Installing + using Put angledat.py in the main dir of your project. Import it and use. Comments Comments st

1 Jan 05, 2022
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022