exponential adaptive pooling for PyTorch

Related tags

Deep LearningadaPool
Overview

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling

supported versions Library GitHub license


Abstract

Pooling layers are essential building blocks of Convolutional Neural Networks (CNNs) that reduce computational overhead and increase the receptive fields of proceeding convolutional operations. They aim to produce downsampled volumes that closely resemble the input volume while, ideally, also being computationally and memory efficient. It is a challenge to meet both requirements jointly. To this end, we propose an adaptive and exponentially weighted pooling method named adaPool. Our proposed method uses a parameterized fusion of two sets of pooling kernels that are based on the exponent of the Dice-Sørensen coefficient and the exponential maximum, respectively. A key property of adaPool is its bidirectional nature. In contrast to common pooling methods, weights can be used to upsample a downsampled activation map. We term this method adaUnPool. We demonstrate how adaPool improves the preservation of detail through a range of tasks including image and video classification and object detection. We then evaluate adaUnPool on image and video frame super-resolution and frame interpolation tasks. For benchmarking, we introduce Inter4K, a novel high-quality, high frame-rate video dataset. Our combined experiments demonstrate that adaPool systematically achieves better results across tasks and backbone architectures, while introducing a minor additional computational and memory overhead.


[arXiv preprint -- coming soon]

Original
adaPool

Dependencies

All parts of the code assume that torch is of version 1.4 or higher. There might be instability issues on previous versions.

This work relies on the previous repo for exponential maximum pooling (alexandrosstergiou/SoftPool). Before opening an issue please do have a look at that repository as common problems in running or installation have been addressed.

! Disclaimer: This repository is heavily structurally influenced on Ziteng Gao's LIP repo https://github.com/sebgao/LIP

Installation

You can build the repo through the following commands:

$ git clone https://github.com/alexandrosstergiou/adaPool.git
$ cd adaPool-master/pytorch
$ make install
--- (optional) ---
$ make test

Usage

You can load any of the 1D, 2D or 3D variants after the installation with:

# Ensure that you import `torch` first!
import torch
import adapool_cuda

# For function calls
from adaPool import adapool1d, adapool2d, adapool3d, adaunpool
from adaPool import edscwpool1d, edscwpool2d, edscwpool3d
from adaPool import empool1d, empool2d, empool3d
from adaPool import idwpool1d, idwpool2d, idwpool3d

# For class calls
from adaPool import AdaPool1d, AdaPool2d, AdaPool3d
from adaPool import EDSCWPool1d, EDSCWPool2d, EDSCWPool3d
from adaPool import EMPool1d, EMPool2d, EMPool3d
from adaPool import IDWPool1d, IDWPool2d, IDWPool3d
  • (ada/edscw/em/idw)pool<x>d: Are functional interfaces for each of the respective pooling methods.
  • (Ada/Edscw/Em/Idw)Pool<x>d: Are the class version to create objects that can be referenced in the code.

Citation

@article{stergiou2021adapool,
  title={AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling},
  author={Stergiou, Alexandros and Poppe, Ronald},
  journal={arXiv preprint},
  year={2021}}

Licence

MIT

You might also like...
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

[CVPR 2021] Official PyTorch Implementation for
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

Comments
  • Installation issue on Google Colab

    Installation issue on Google Colab

    Hi, Thanks for providing a Cuda optimized implementation. While building the lib I encountered an issue with "inf" at limits.cuh.

    CUDA/limits.cuh(119): error: identifier "inf" is undefined
    
    CUDA/limits.cuh(120): error: identifier "inf" is undefined
    
    CUDA/limits.cuh(128): error: identifier "inf" is undefined
    
    CUDA/limits.cuh(129): error: identifier "inf" is undefined
    
    4 errors detected in the compilation of "CUDA/adapool_cuda_kernel.cu".
    error: command '/usr/local/cuda/bin/nvcc' failed with exit status 1
    Makefile:2: recipe for target 'install' failed
    make: *** [install] Error 1
    

    The following notebook provides more details with environment informations: https://colab.research.google.com/drive/1T6Nxe2qbjKxXzo2IimFMYBn52qbthlZB?usp=sharing

    opened by okbalefthanded 2
  • Solution: Unresolved extern function '_Z3powdi'”

    Solution: Unresolved extern function '_Z3powdi'”

    cuda11. 0

    When I tried to build your project on win10, I encountered the following problems: “ptxas fatal : Unresolved extern function '_Z3powdi'”

    Reason: Wrong use of pow function in Cu code Solution: for example, pow (x, 2) can be changed to X * X

    opened by Culturenotes 1
  • Does AdaPool2d's beta require fixed image size?

    Does AdaPool2d's beta require fixed image size?

    I'm currently running AdaPool2d as a replacement of MaxPool2d in Resnet's stem similar on how you did it in SoftPool. However, I keep on getting an assertionError in line 1325 as shown below:

    assert isinstance(beta, tuple) or torch.is_tensor(beta), 'Agument `beta` can only be initialized with Tuple or Tensor type objects and should correspond to size (oH, oW)'
    

    Does this mean beta requires a fixed image size, e.g. (224,244)? Or is there a way to make it adaptive across varying image size (e.g. object detection)?

    opened by johnanthonyjose 1
  • The version of pytorch and how to deal with `nan_to_num` function in lower versions

    The version of pytorch and how to deal with `nan_to_num` function in lower versions

    Thank you for this amazing project. I saw it from SoftPool. After installing it, make test, but I got AttributeError: module 'torch' has no attribute 'nan_to_num', after I checked, this function used in idea.py was introduced in Pytorch 1.8.0, so the torch version in the README may need to be updated, or is there an easy way to be compatible with lower versions?

    opened by MaxChanger 1
Releases(v0.2)
Owner
Alexandros Stergiou
Computer Vision and Machine Learning Researcher
Alexandros Stergiou
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022