Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Related tags

Deep LearningGLPDepth
Overview

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

PWC PWC

Downloads

  • [Downloads] Trained ckpt files for NYU Depth V2 and KITTI
  • [Downloads] Predicted depth maps png files for NYU Depth V2 and KITTI Eigen split test set

Requirements

Tested on

python==3.7.7
torch==1.6.0
h5py==3.6.0
scipy==1.7.3
opencv-python==4.5.5
mmcv==1.4.3
timm=0.5.4
albumentations=1.1.0
tensorboardX==2.4.1

You can install above package with

$ pip install -r requirements.txt

Inference and Evaluate

Dataset

NYU Depth V2
$ cd ./datasets
$ wget http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
$ python ../code/utils/extract_official_train_test_set_from_mat.py nyu_depth_v2_labeled.mat splits.mat ./nyu_depth_v2/official_splits/
KITTI

Download annotated depth maps data set (14GB) from [link] into ./datasets/kitti/data_depth_annotated

$ cd ./datasets/kitti/data_depth_annotated/
$ unzip data_depth_annotated.zip

With above two instrtuctions, you can perform eval_with_pngs.py/test.py for NYU Depth V2 and eval_with_pngs for KITTI.

To fully perform experiments, please follow [BTS] repository to obtain full dataset for NYU Depth V2 and KITTI datasets.

Your dataset directory should be

root
- nyu_depth_v2
  - bathroom_0001
  - bathroom_0002
  - ...
  - official_splits
- kitti
  - data_depth_annotated
  - raw_data
  - val_selection_cropped

Evaluation

  • Evaluate with png images

    for NYU Depth V2

    $ python ./code/eval_with_pngs.py --dataset nyudepthv2 --pred_path ./best_nyu_preds/ --gt_path ./datasets/nyu_depth_v2/ --max_depth_eval 10.0 
    

    for KITTI

    $ python ./code/eval_with_pngs.py --dataset kitti --split eigen_benchmark --pred_path ./best_kitti_preds/ --gt_path ./datasets/kitti/ --max_depth_eval 80.0 --garg_crop
    
  • Evaluate with model (NYU Depth V2)

    Result images will be saved in ./args.result_dir/args.exp_name (default: ./results/test)

    • To evaluate only

      $ python ./code/test.py --dataset nyudepthv2 --data_path ./datasets/ --ckpt_dir 
             
               --do_evaluate  --max_depth 10.0 --max_depth_eval 10.0
      
             
    • To save pngs for eval_with_pngs

      $ python ./code/test.py --dataset nyudepthv2 --data_path ./datasets/ --ckpt_dir 
             
               --save_eval_pngs  --max_depth 10.0 --max_depth_eval 10.0
      
             
    • To save visualized depth maps

      $ python ./code/test.py --dataset nyudepthv2 --data_path ./datasets/ --ckpt_dir 
             
               --save_visualize  --max_depth 10.0 --max_depth_eval 10.0
      
             

    In case of kitti, modify arguments to --dataset kitti --max_depth 80.0 --max_depth_eval 80.0 and add --kitti_crop [garg_crop or eigen_crop]

Inference

  • Inference with image directory
    $ python ./code/test.py --dataset imagepath --data_path 
         
           --save_visualize
    
         

To-Do

  • Add inference
  • Add training codes
  • Add dockerHub link
  • Add colab

References

[1] From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation. [code]

[2] SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. [code]

Owner
KAIST, EE, PhD student
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023