Multivariate Boosted TRee

Related tags

Deep Learningmbtr
Overview

Documentation Status Build Status codecov Latest Version License: MIT

Multivariate Boosted TRee

What is MBTR

MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can handle arbitrary multivariate losses, as long as their gradient and Hessian are known. Gradient boosted trees are competition-winning, general-purpose, non-parametric regressors, which exploit sequential model fitting and gradient descent to minimize a specific loss function. The most popular implementations are tailored to univariate regression and classification tasks, precluding the possibility of capturing multivariate target cross-correlations and applying conditional penalties to the predictions. This package allows to arbitrarily regularize the predictions, so that properties like smoothness, consistency and functional relations can be enforced.

Installation

pip install --upgrade git+https://github.com/supsi-dacd-isaac/mbtr.git

Usage

MBT regressor follows the scikit-learn syntax for regressors. Creating a default instance and training it is as simple as:

m = MBT().fit(x,y)

while predictions for the test set are obtained through

y_hat = m.predict(x_te)

The most important parameters are the number of boosts n_boost, that is, the number of fitted trees, learning_rate and the loss_type. An extensive explanation of the different parameters can be found in the documentation.

Documentation

Documentation and examples on the usage can be found at docs.

Reference

If you make use of this software for your work, we would appreciate it if you would cite us:

Lorenzo Nespoli and Vasco Medici (2020). Multivariate Boosted Trees and Applications to Forecasting and Control arXiv

@article{nespoli2020multivariate,
  title={Multivariate Boosted Trees and Applications to Forecasting and Control},
  author={Nespoli, Lorenzo and Medici, Vasco},
  journal={arXiv preprint arXiv:2003.03835},
  year={2020}
}

Acknowledgments

The authors would like to thank the Swiss Federal Office of Energy (SFOE) and the Swiss Competence Center for Energy Research - Future Swiss Electrical Infrastructure (SCCER-FURIES), for their financial and technical support to this research work.

You might also like...
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

NAS Benchmark in
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

This is the code repository implementing the paper
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

Comments
  • Is it possible to define custom loss function ?

    Is it possible to define custom loss function ?

    Dear all, First thank you for developping this tool, that I believe is of great interest. I am working with:

    • environmental variables (e.g. temperature, salinity)
    • multi-dimensional targets, that are relative abundance, with their sum = 1 for each site

    Therefore, I was wondering if it is possible to implement a custom loss function in the mbtr framework, that would be adapted for proportions. Please note that I am quite new to python.

    To do some testing, I tryed to dupplicate the mse loss function with another name in the losses.py file and adding the new loss in the LOSS_MAP in __inits__.py. Then I compiled the files. However, I have this error when trying to run the model from the multi_reg.py example:

    >>> m = MBT(loss_type = 'mse', n_boosts=30,  min_leaf=100, lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
      3%|▎         | 1/30 [00:03<01:45,  3.63s/it]
    >>> m = MBT(loss_type = 'custom_mse', n_boosts=30,  min_leaf=100, lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
      0%|          | 0/30 [00:00<?, ?it/s]KeyError: 'custom_mse'
    

    It seems that the new loss is not recognised in LOSS_MAP:

    >>> LOSS_MAP = {'custom_mse': losses.custom_MSE,
    ...             'mse': losses.MSE,
    ...             'time_smoother': losses.TimeSmoother,
    ...             'latent_variable': losses.LatentVariable,
    ...             'linear_regression': losses.LinRegLoss,
    ...             'fourier': losses.FourierLoss,
    ...             'quantile': losses.QuantileLoss,
    ...             'quadratic_quantile': losses.QuadraticQuantileLoss}
    AttributeError: module 'mbtr.losses' has no attribute 'custom_MSE'
    

    I guess that I missed something when trying to dupplicate and rename the mse loss. I would appreciate any help if the definition of a custom loss function is possible.

    Best regards,

    opened by alexschickele 2
  • Dataset cannot be reached

    Dataset cannot be reached

    Hi thank you for your effort to create this. I want to try this but i cannot download nor visit the web that you provided in example multivariate_forecas.py

    Is there any alternative link for that dataset? thank you regards!

    opened by kristfrizh 1
  • Error at import time with python 3.10.*

    Error at import time with python 3.10.*

    I want to use MBTR in a teaching module and I need to use jupyter-lab inside a conda environment for teaching purposes. While MBTR works as expected in a vanilla python 3.8, it errors out (on the same machine) in a conda environment using python 3.10

    Steps to reproduce

    conda create --name testenv
    conda activate testenv
    
    conda install -c conda-forge jupyterlab
    pip install --upgrade git+https://github.com/supsi-dacd-isaac/mbtr.git
    # to make sure to get the latest version; but the version on pypi gives the same error 
    

    Then

    python
    

    and in python

    from mbtr.mbtr import MBT
    

    which outputs the following error

    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py", line 317, in <module>
        def leaf_stats(y, edges, x, order):
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/decorators.py", line 219, in wrapper
        disp.compile(sig)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 965, in compile
        cres = self._compiler.compile(args, return_type)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 129, in compile
        raise retval
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 139, in _compile_cached
        retval = self._compile_core(args, return_type)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 152, in _compile_core
        cres = compiler.compile_extra(self.targetdescr.typing_context,
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 716, in compile_extra
        return pipeline.compile_extra(func)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 452, in compile_extra
        return self._compile_bytecode()
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 520, in _compile_bytecode
        return self._compile_core()
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 499, in _compile_core
        raise e
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 486, in _compile_core
        pm.run(self.state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 368, in run
        raise patched_exception
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 356, in run
        self._runPass(idx, pass_inst, state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_lock.py", line 35, in _acquire_compile_lock
        return func(*args, **kwargs)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 311, in _runPass
        mutated |= check(pss.run_pass, internal_state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 273, in check
        mangled = func(compiler_state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typed_passes.py", line 105, in run_pass
        typemap, return_type, calltypes, errs = type_inference_stage(
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typed_passes.py", line 83, in type_inference_stage
        errs = infer.propagate(raise_errors=raise_errors)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typeinfer.py", line 1086, in propagate
        raise errors[0]
    numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)
    No conversion from UniTuple(none x 2) to UniTuple(array(float64, 2d, A) x 2) for '$116return_value.7', defined at None
    
    File ".conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py", line 327:
    def leaf_stats(y, edges, x, order):
        <source elided>
            s_left, s_right = None, None
        return s_left, s_right
        ^
    
    During: typing of assignment at /home/myself/.conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py (327)
    
    File ".conda/envs/test/lib/python3.10/site-packages/mbtr/mbtr.py", line 327:
    def leaf_stats(y, edges, x, order):
        <source elided>
            s_left, s_right = None, None
        return s_left, s_right
        ^
    

    Thanks in advance for any pointer/help. The course where I want to present this is a summer course and is closing in on me 😉

    opened by jiho 0
Releases(v0.1.3)
Owner
SUPSI-DACD-ISAAC
SUPSI-DACD-ISAAC
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

Leo 21 Nov 23, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022