Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

Related tags

Deep LearningSSTNet
Overview

SSTNet

PWC PWC

overview Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia*. (*) Corresponding author. [arxiv]

Introduction

Instance segmentation in 3D scenes is fundamental in many applications of scene understanding. It is yet challenging due to the compound factors of data irregularity and uncertainty in the numbers of instances. State-of-the-art methods largely rely on a general pipeline that first learns point-wise features discriminative at semantic and instance levels, followed by a separate step of point grouping for proposing object instances. While promising, they have the shortcomings that (1) the second step is not supervised by the main objective of instance segmentation, and (2) their point-wise feature learning and grouping are less effective to deal with data irregularities, possibly resulting in fragmented segmentations. To address these issues, we propose in this work an end-to-end solution of Semantic Superpoint Tree Network (SSTNet) for proposing object instances from scene points. Key in SSTNet is an intermediate, semantic superpoint tree (SST), which is constructed based on the learned semantic features of superpoints, and which will be traversed and split at intermediate tree nodes for proposals of object instances. We also design in SSTNet a refinement module, termed CliqueNet, to prune superpoints that may be wrongly grouped into instance proposals.

Installation

Requirements

  • Python 3.8.5
  • Pytorch 1.7.1
  • torchvision 0.8.2
  • CUDA 11.1

then install the requirements:

pip install -r requirements.txt

SparseConv

For the SparseConv, please refer PointGroup's spconv to install.

Extension

This project is based on our Gorilla-Lab deep learning toolkit - gorilla-core and 3D toolkit gorilla-3d.

For gorilla-core, you can install it by running:

pip install gorilla-core==0.2.7.6

or building from source(recommend)

git clone https://github.com/Gorilla-Lab-SCUT/gorilla-core
cd gorilla-core
python setup.py install(develop)

For gorilla-3d, you should install it by building from source:

git clone https://github.com/Gorilla-Lab-SCUT/gorilla-3d
cd gorilla-3d
python setup.py develop

Tip: for high-version torch, the BuildExtension may fail by using ninja to build the compile system. If you meet this problem, you can change the BuildExtension in cmdclass={"build_ext": BuildExtension} as cmdclass={"build_ext": BuildExtension}.with_options(use_ninja=False)

Otherwise, this project also need other extension, we use the pointgroup_ops to realize voxelization and use the segmentator to generate superpoints for scannet scene. we use the htree to construct the Semantic Superpoint Tree and the hierarchical node-inheriting relations is realized based on the modified cluster.hierarchy.linkage function from scipy.

  • For pointgroup_ops, we modified the package from PointGroup to let its function calls get rid of the dependence on absolute paths. You can install it by running:
    conda install -c bioconda google-sparsehash 
    cd $PROJECT_ROOT$
    cd sstnet/lib/pointgroup_ops
    python setup.py develop
    Then, you can call the function like:
    import pointgroup_ops
    pointgroup_ops.voxelization
    >>> <function Voxelization.apply>
  • For htree, it can be seen as a supplement to the treelib python package, and I abstract the SST through both of them. You can install it by running:
    cd $PROJECT_ROOT$
    cd sstnet/lib/htree
    python setup.py install

    Tip: The interaction between this piece of code and treelib is a bit messy. I lack time to organize it, which may cause some difficulties for someone in understanding. I am sorry for this. At the same time, I also welcome people to improve it.

  • For cluster, it is originally a sub-module in scipy, the SST construction requires the cluster.hierarchy.linkage to be implemented. However, the origin implementation do not consider the sizes of clustering nodes (each superpoint contains different number of points). To this end, we modify this function and let it support the property mentioned above. So, for used, you can install it by running:
    cd $PROJECT_ROOT$
    cd sstnet/lib/cluster
    python setup.py install
  • For segmentator, please refer here to install. (We wrap the segmentator in ScanNet)

Data Preparation

Please refer to the README.md in data/scannetv2 to realize data preparation.

Training

CUDA_VISIBLE_DEVICES=0 python train.py --config config/default.yaml

You can start a tensorboard session by

tensorboard --logdir=./log --port=6666

Tip: For the directory of logging, please refer the implementation of function gorilla.collect_logger.

Inference and Evaluation

CUDA_VISIBLE_DEVICES=0 python test.py --config config/default.yaml --pretrain pretrain.pth --eval
  • --split is the evaluation split of dataset.
  • --save is the action to save instance segmentation results.
  • --eval is the action to evaluate the segmentation results.
  • --semantic is the action to evaluate semantic segmentation only (work on the --eval mode).
  • --log-file is to define the logging file to save evaluation result (default please to refer the gorilla.collect_logger).
  • --visual is the action to save visualization of instance segmentation. (It will be mentioned in the next partion.)

Results on ScanNet Benchmark

Rank 1st on the ScanNet benchmark benchmark

Pretrained

We provide a pretrained model trained on ScanNet(v2) dataset. [Google Drive] [Baidu Cloud] (提取码:f3az) Its performance on ScanNet(v2) validation set is 49.4/64.9/74.4 in terms of mAP/mAP50/mAP25.

Acknowledgement

This repo is built upon several repos, e.g., PointGroup, spconv and ScanNet.

Contact

If you have any questions or suggestions about this repo or paper, please feel free to contact me in issue or email ([email protected]).

TODO

  • Distributed training(not verification)
  • Batch inference
  • Multi-processing for getting superpoints

Citation

If you find this work useful in your research, please cite:

@misc{liang2021instance,
      title={Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks}, 
      author={Zhihao Liang and Zhihao Li and Songcen Xu and Mingkui Tan and Kui Jia},
      year={2021},
      eprint={2108.07478},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Research lab focusing on CV, ML, and AI
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
LBK 26 Dec 28, 2022