[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

Related tags

Deep Learningghfeat
Overview

GH-Feat - Generative Hierarchical Features from Synthesizing Images

image Figure: Training framework of GH-Feat.

Generative Hierarchical Features from Synthesizing Images
Yinghao Xu*, Yujun Shen*, Jiapeng Zhu, Ceyuan Yang, Bolei Zhou
Computer Vision and Pattern Recognition (CVPR), 2021 (Oral)

[Paper] [Project Page]

In this work, we show that well-trained GAN generators can be used as training supervision to learn hierarchical visual features. We call this feature as Generative Hierarchical Feature (GH-Feat). Properly learned from a novel hierarchical encoder, GH-Feat is able to facilitate both discriminative and generative visual tasks, including face verification, landmark detection, layout prediction, transfer learning, style mixing, image editing, etc.

Usage

Environment

Before running the code, please setup the environment with

conda env create -f environment.yml
conda activate ghfeat

Testing

The following script can be used to extract GH-Feat from a list of images.

python extract_ghfeat.py ${ENCODER_PATH} ${IMAGE_LIST} -o ${OUTPUT_DIR}

We provide some well-learned encoders for inference.

Path Description
face_256x256 GH-Feat encoder trained on FF-HQ dataset.
tower_256x256 GH-Feat encoder trained on LSUN Tower dataset.
bedroom_256x256 GH-Feat encoder trained on LSUN Bedroom dataset.

Training

Given a well-trained StyleGAN generator, our hierarchical encoder is trained with the objective of image reconstruction.

python train_ghfeat.py \
       ${TRAIN_DATA_PATH} \
       ${VAL_DATA_PATH} \
       ${GENERATOR_PATH} \
       --num_gpus ${NUM_GPUS}

Here, the train_data and val_data can be created by this script. Note that, according to the official StyleGAN repo, the dataset is prepared in the multi-scale manner, but our encoder training only requires the data at the largest resolution. Hence, please specify the path to the tfrecords with the target resolution instead of the directory of all the tfrecords files.

Users can also train the encoder with slurm:

srun.sh ${PARTITION} ${NUM_GPUS} \
        python train_ghfeat.py \
               ${TRAIN_DATA_PATH} \
               ${VAL_DATA_PATH} \
               ${GENERATOR_PATH} \
               --num_gpus ${NUM_GPUS}

We provide some pre-trained generators as follows.

Path Description
face_256x256 StyleGAN trained on FFHQ dataset.
tower_256x256 StyleGAN trained on LSUN Tower dataset.
bedroom_256x256 StyleGAN trained on LSUN Bedroom dataset.

Codebase Description

  • Most codes are directly borrowed from StyleGAN repo.
  • Structure of the proposed hierarchical encoder: training/networks_ghfeat.py
  • Training loop of the encoder: training/training_loop_ghfeat.py
  • To feed GH-Feat produced by the encoder to the generator as layer-wise style codes, we slightly modify training/networks_stylegan.py. (See Line 263 and Line 477).
  • Main script for encoder training: train_ghfeat.py.
  • Script for extracting GH-Feat from images: extract_ghfeat.py.
  • VGG model for computing perceptual loss: perceptual_model.py.

Results

We show some results achieved by GH-Feat on a variety of downstream visual tasks.

Discriminative Tasks

Indoor scene layout prediction image

Facial landmark detection image

Face verification (face reconstruction) image

Generative Tasks

Image harmonization image

Global editing image

Local Editing image

Multi-level style mixing image

BibTeX

@inproceedings{xu2021generative,
  title     = {Generative Hierarchical Features from Synthesizing Images},
  author    = {Xu, Yinghao and Shen, Yujun and Zhu, Jiapeng and Yang, Ceyuan and Zhou, Bolei},
  booktitle = {CVPR},
  year      = {2021}
}
Owner
GenForce: May Generative Force Be with You
Research on Generative Modeling in Zhou Group
GenForce: May Generative Force Be with You
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022