The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Overview

Cutoff: A Simple Data Augmentation Approach for Natural Language

This repository contains source code necessary to reproduce the results presented in the following paper:

This project is maintained by Dinghan Shen. Feel free to contact [email protected] for any relevant issues.

Natural Language Undertanding (e.g. GLUE tasks, etc.)

Prerequisite:

  • CUDA, cudnn
  • Python 3.7
  • PyTorch 1.4.0

Run

  1. Install Huggingface Transformers according to the instructions here: https://github.com/huggingface/transformers.

  2. Download the datasets from the GLUE benchmark:

python download_glue_data.py --data_dir glue_data --tasks all
  1. Fine-tune the RoBERTa-base or RoBERTa-large model with the Cutoff data augmentation strategies:
>>> chmod +x run_glue.sh
>>> ./run_glue.sh

Options: different settings and hyperparameters can be selected and specified in the run_glue.sh script:

  • do_aug: whether augmented examples are used for training.
  • aug_type: the specific strategy to synthesize Cutoff samples, which can be chosen from: 'span_cutoff', 'token_cutoff' and 'dim_cutoff'.
  • aug_cutoff_ratio: the ratio corresponding to the span length, token number or number of dimensions to be cut.
  • aug_ce_loss: the coefficient for the cross-entropy loss over the cutoff examples.
  • aug_js_loss: the coefficient for the Jensen-Shannon (JS) Divergence consistency loss over the cutoff examples.
  • TASK_NAME: the downstream GLUE task for fine-tuning.
  • model_name_or_path: the pre-trained for initialization (both RoBERTa-base or RoBERTa-large models are supported).
  • output_dir: the folder results being saved to.

Natural Language Generation (e.g. Translation, etc.)

Please refer to Neural Machine Translation with Data Augmentation for more details

IWSLT'14 German to English (Transformers)

Task Setting Approach BLEU
iwslt14 de-en transformer-small w/o cutoff 36.2
iwslt14 de-en transformer-small w/ cutoff 37.6

WMT'14 English to German (Transformers)

Task Setting Approach BLEU
wmt14 en-de transformer-base w/o cutoff 28.6
wmt14 en-de transformer-base w/ cutoff 29.1
wmt14 en-de transformer-big w/o cutoff 29.5
wmt14 en-de transformer-big w/ cutoff 30.3

Citation

Please cite our paper in your publications if it helps your research:

@article{shen2020simple,
  title={A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation},
  author={Shen, Dinghan and Zheng, Mingzhi and Shen, Yelong and Qu, Yanru and Chen, Weizhu},
  journal={arXiv preprint arXiv:2009.13818},
  year={2020}
}
Owner
Dinghan Shen
Natural Language Processing, Deep Learning
Dinghan Shen
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
3 Apr 20, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023