The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Overview

Cutoff: A Simple Data Augmentation Approach for Natural Language

This repository contains source code necessary to reproduce the results presented in the following paper:

This project is maintained by Dinghan Shen. Feel free to contact [email protected] for any relevant issues.

Natural Language Undertanding (e.g. GLUE tasks, etc.)

Prerequisite:

  • CUDA, cudnn
  • Python 3.7
  • PyTorch 1.4.0

Run

  1. Install Huggingface Transformers according to the instructions here: https://github.com/huggingface/transformers.

  2. Download the datasets from the GLUE benchmark:

python download_glue_data.py --data_dir glue_data --tasks all
  1. Fine-tune the RoBERTa-base or RoBERTa-large model with the Cutoff data augmentation strategies:
>>> chmod +x run_glue.sh
>>> ./run_glue.sh

Options: different settings and hyperparameters can be selected and specified in the run_glue.sh script:

  • do_aug: whether augmented examples are used for training.
  • aug_type: the specific strategy to synthesize Cutoff samples, which can be chosen from: 'span_cutoff', 'token_cutoff' and 'dim_cutoff'.
  • aug_cutoff_ratio: the ratio corresponding to the span length, token number or number of dimensions to be cut.
  • aug_ce_loss: the coefficient for the cross-entropy loss over the cutoff examples.
  • aug_js_loss: the coefficient for the Jensen-Shannon (JS) Divergence consistency loss over the cutoff examples.
  • TASK_NAME: the downstream GLUE task for fine-tuning.
  • model_name_or_path: the pre-trained for initialization (both RoBERTa-base or RoBERTa-large models are supported).
  • output_dir: the folder results being saved to.

Natural Language Generation (e.g. Translation, etc.)

Please refer to Neural Machine Translation with Data Augmentation for more details

IWSLT'14 German to English (Transformers)

Task Setting Approach BLEU
iwslt14 de-en transformer-small w/o cutoff 36.2
iwslt14 de-en transformer-small w/ cutoff 37.6

WMT'14 English to German (Transformers)

Task Setting Approach BLEU
wmt14 en-de transformer-base w/o cutoff 28.6
wmt14 en-de transformer-base w/ cutoff 29.1
wmt14 en-de transformer-big w/o cutoff 29.5
wmt14 en-de transformer-big w/ cutoff 30.3

Citation

Please cite our paper in your publications if it helps your research:

@article{shen2020simple,
  title={A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation},
  author={Shen, Dinghan and Zheng, Mingzhi and Shen, Yelong and Qu, Yanru and Chen, Weizhu},
  journal={arXiv preprint arXiv:2009.13818},
  year={2020}
}
Owner
Dinghan Shen
Natural Language Processing, Deep Learning
Dinghan Shen
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023