This repository contains demos I made with the Transformers library by HuggingFace.

Overview

Transformers-Tutorials

Hi there!

This repository contains demos I made with the Transformers library by πŸ€— HuggingFace. Currently, all of them are implemented in PyTorch.

NOTE: if you are not familiar with HuggingFace and/or Transformers, I highly recommend to check out our free course, which introduces you to several Transformer architectures (such as BERT, GPT-2, T5, BART, etc.), as well as an overview of the HuggingFace libraries, including Transformers, Tokenizers, Datasets, Accelerate and the hub.

Currently, it contains the following demos:

  • BERT (paper):
    • fine-tuning BertForTokenClassification on a named entity recognition (NER) dataset. Open In Colab
    • fine-tuning BertForSequenceClassification for multi-label text classification. Open In Colab
  • CANINE (paper):
    • fine-tuning CanineForSequenceClassification on IMDb Open In Colab
  • DETR (paper):
    • performing inference with DetrForObjectDetection Open In Colab
    • fine-tuning DetrForObjectDetection on a custom object detection dataset Open In Colab
    • evaluating DetrForObjectDetection on the COCO detection 2017 validation set Open In Colab
    • performing inference with DetrForSegmentation Open In Colab
    • fine-tuning DetrForSegmentation on COCO panoptic 2017 Open In Colab
  • GPT-J-6B (repository):
    • performing inference with GPTJForCausalLM to illustrate few-shot learning and code generation Open In Colab
  • ImageGPT (blog post):
    • (un)conditional image generation with ImageGPTForCausalLM Open In Colab
    • linear probing with ImageGPT Open In Colab
  • LayoutLM (paper):
    • fine-tuning LayoutLMForTokenClassification on the FUNSD dataset Open In Colab
    • fine-tuning LayoutLMForSequenceClassification on the RVL-CDIP dataset Open In Colab
    • adding image embeddings to LayoutLM during fine-tuning on the FUNSD dataset Open In Colab
  • LayoutLMv2 (paper):
    • fine-tuning LayoutLMv2ForSequenceClassification on RVL-CDIP Open In Colab
    • fine-tuning LayoutLMv2ForTokenClassification on FUNSD Open In Colab
    • fine-tuning LayoutLMv2ForTokenClassification on FUNSD using the πŸ€— Trainer Open In Colab
    • performing inference with LayoutLMv2ForTokenClassification on FUNSD Open In Colab
    • true inference with LayoutLMv2ForTokenClassification (when no labels are available) + Gradio demo Open In Colab
    • fine-tuning LayoutLMv2ForTokenClassification on CORD Open In Colab
    • fine-tuning LayoutLMv2ForQuestionAnswering on DOCVQA Open In Colab
  • LUKE (paper):
    • fine-tuning LukeForEntityPairClassification on a custom relation extraction dataset using PyTorch Lightning Open In Colab
  • SegFormer (paper):
    • performing inference with SegformerForSemanticSegmentation Open In Colab
    • fine-tuning SegformerForSemanticSegmentation on custom data using native PyTorch Open In Colab
  • Perceiver IO (paper):
    • showcasing masked language modeling and image classification with the Perceiver Open In Colab
    • fine-tuning the Perceiver for image classification Open In Colab
    • fine-tuning the Perceiver for text classification Open In Colab
    • predicting optical flow between a pair of images with PerceiverForOpticalFlowOpen In Colab
    • auto-encoding a video (images, audio, labels) with PerceiverForMultimodalAutoencoding Open In Colab
  • T5 (paper):
    • fine-tuning T5ForConditionalGeneration on a Dutch summarization dataset on TPU using HuggingFace Accelerate Open In Colab
    • fine-tuning T5ForConditionalGeneration (CodeT5) for Ruby code summarization using PyTorch Lightning Open In Colab
  • TAPAS (paper):
  • TrOCR (paper):
    • performing inference with TrOCR to illustrate optical character recognition with Transformers, as well as making a Gradio demo Open In Colab
    • fine-tuning TrOCR on the IAM dataset using the Seq2SeqTrainer Open In Colab
    • fine-tuning TrOCR on the IAM dataset using native PyTorch Open In Colab
    • evaluating TrOCR on the IAM test set Open In Colab
  • Vision Transformer (paper):
    • performing inference with ViTForImageClassification Open In Colab
    • fine-tuning ViTForImageClassification on CIFAR-10 using PyTorch Lightning Open In Colab
    • fine-tuning ViTForImageClassification on CIFAR-10 using the πŸ€— Trainer Open In Colab

... more to come! πŸ€—

If you have any questions regarding these demos, feel free to open an issue on this repository.

Btw, I was also the main contributor to add the following algorithms to the library:

  • TAbular PArSing (TAPAS) by Google AI
  • Vision Transformer (ViT) by Google AI
  • Data-efficient Image Transformers (DeiT) by Facebook AI
  • LUKE by Studio Ousia
  • DEtection TRansformers (DETR) by Facebook AI
  • CANINE by Google AI
  • BEiT by Microsoft Research
  • LayoutLMv2 (and LayoutXLM) by Microsoft Research
  • TrOCR by Microsoft Research
  • SegFormer by NVIDIA
  • ImageGPT by OpenAI
  • Perceiver by Deepmind

All of them were an incredible learning experience. I can recommend anyone to contribute an AI algorithm to the library!

Data preprocessing

Regarding preparing your data for a PyTorch model, there are a few options:

  • a native PyTorch dataset + dataloader. This is the standard way to prepare data for a PyTorch model, namely by subclassing torch.utils.data.Dataset, and then a creating corresponding DataLoader (which is a Python generator that allows to loop over the items of a dataset). When subclassing the Dataset class, one needs to implement 3 methods: __init__, __len__ (which returns the number of examples of the dataset) and __getitem__ (which returns an example of the dataset, given an integer index). Here's an example of creating a basic text classification dataset (assuming one has a CSV that contains 2 columns, namely "text" and "label"):
from torch.utils.data import Dataset

class CustomTrainDataset(Dataset):
    def __init__(self, df, tokenizer):
        self.df = df
        self.tokenizer = tokenizer

    def __len__(self):
        return len(self.df)

    def __getitem__(self, idx):
        # get item
        item = df.iloc[idx]
        text = item['text']
        label = item['label']
        # encode text
        encoding = self.tokenizer(text, padding="max_length", max_length=128, truncation=True, return_tensors="pt")
        # remove batch dimension which the tokenizer automatically adds
        encoding = {k:v.squeeze() for k,v in encoding.items()}
        # add label
        encoding["label"] = torch.tensor(label)
        
        return encoding

Instantiating the dataset then happens as follows:

from transformers import BertTokenizer
import pandas as pd

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
df = pd.read_csv("path_to_your_csv")

train_dataset = CustomTrainDataset(df=df tokenizer=tokenizer)

Accessing the first example of the dataset can then be done as follows:

encoding = train_dataset[0]

In practice, one creates a corresponding DataLoader, that allows to get batches from the dataset:

from torch.utils.data import DataLoader

train_dataloader = DataLoader(train_dataset, batch_size=4, shuffle=True)

I often check whether the data is created correctly by fetching the first batch from the data loader, and then printing out the shapes of the tensors, decoding the input_ids back to text, etc.

batch = next(iter(train_dataloader))
for k,v in batch.items():
    print(k, v.shape)
# decode the input_ids of the first example of the batch
print(tokenizer.decode(batch['input_ids'][0].tolist())
  • HuggingFace Datasets. Datasets is a library by HuggingFace that allows to easily load and process data in a very fast and memory-efficient way. It is backed by Apache Arrow, and has cool features such as memory-mapping, which allow you to only load data into RAM when it is required. It only has deep interoperability with the HuggingFace hub, allowing to easily load well-known datasets as well as share your own with the community.

Loading a custom dataset as a Dataset object can be done as follows (you can install datasets using pip install datasets):

from datasets import load_dataset

dataset = load_dataset('csv', data_files={'train': ['my_train_file_1.csv', 'my_train_file_2.csv'] 'test': 'my_test_file.csv'})

Here I'm loading local CSV files, but there are other formats supported (including JSON, Parquet, txt) as well as loading data from a local Pandas dataframe or dictionary for instance. You can check out the docs for all details.

Training frameworks

Regarding fine-tuning Transformer models (or more generally, PyTorch models), there are a few options:

  • using native PyTorch. This is the most basic way to train a model, and requires the user to manually write the training loop. The advantage is that this is very easy to debug. The disadvantage is that one needs to implement training him/herself, such as setting the model in the appropriate mode (model.train()/model.eval()), handle device placement (model.to(device)), etc. A typical training loop in PyTorch looks as follows (inspired by this great PyTorch intro tutorial):
import torch

model = ...

# I almost always use a learning rate of 5e-5 when fine-tuning Transformer based models
optimizer = torch.optim.Adam(model.parameters(), lr=5-e5)

# put model on GPU, if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

for epoch in range(epochs):
    model.train()
    train_loss = 0.0
    for batch in train_dataloader:
        # put batch on device
        batch = {k:v.to(device) for k,v in batch.items()}
        
        # forward pass
        outputs = model(**batch)
        loss = outputs.loss
        
        train_loss += loss.item()
        
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

    print("Loss after epoch {epoch}:", train_loss/len(train_dataloader))
    
    model.eval()
    val_loss = 0.0
    with torch.no_grad():
        for batch in eval_dataloader:
            # put batch on device
            batch = {k:v.to(device) for k,v in batch.items()}
            
            # forward pass
            outputs = model(**batch)
            loss = outputs.logits
            
            val_loss += loss.item()
                  
    print("Validation loss after epoch {epoch}:", val_loss/len(eval_dataloader))
  • PyTorch Lightning (PL). PyTorch Lightning is a framework that automates the training loop written above, by abstracting it away in a Trainer object. Users don't need to write the training loop themselves anymore, instead they can just do trainer = Trainer() and then trainer.fit(model). The advantage is that you can start training models very quickly (hence the name lightning), as all training-related code is handled by the Trainer object. The disadvantage is that it may be more difficult to debug your model, as the training and evaluation is now abstracted away.
  • HuggingFace Trainer. The HuggingFace Trainer API can be seen as a framework similar to PyTorch Lightning in the sense that it also abstracts the training away using a Trainer object. However, contrary to PyTorch Lightning, it is not meant not be a general framework. Rather, it is made especially for fine-tuning Transformer-based models available in the HuggingFace Transformers library. The Trainer also has an extension called Seq2SeqTrainer for encoder-decoder models, such as BART, T5 and the EncoderDecoderModel classes. Note that all PyTorch example scripts of the Transformers library make use of the Trainer.
  • HuggingFace Accelerate: Accelerate is a new project, that is made for people who still want to write their own training loop (as shown above), but would like to make it work automatically irregardless of the hardware (i.e. multiple GPUs, TPU pods, mixed precision, etc.).
Owner
ML @HuggingFace. Interested in deep learning, NLP. Contributed TAPAS, ViT, DeiT, LUKE, DETR, CANINE to HuggingFace Transformers
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Akshat Surolia 2 May 11, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022