Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Related tags

Deep Learningm2e2
Overview

Cross-media Structured Common Space for Multimedia Event Extraction

Table of Contents

Overview

The code for paper Cross-media Structured Common Space for Multimedia Event Extraction.

Photo

Requirements

You can install the environment using requirements.txt for each component.

pip install -r requirements.txt

Data

Situation Recognition (Visual Event Extraction Data)

We download situation recognition data from imSitu. Please find the preprocessed data in PreprcessedSR.

ACE (Text Event Extraction Data)

We preprcoessed ACE following JMEE. The preprocessing script is in dataflow/preprocess_ace_JMEE.py, and the sample data format is in sample.json. Due to license reason, the ACE 2005 dataset is only accessible to those with LDC2006T06 license, please drop me an email showing your possession of the license for the processed data.

Voice of America Image-Caption Pairs

We crawled VOA image-captions to train the common space, the image-caption pairs and images can be downloaded using the URLs (We share image URLs instead of downloaded images due to license issue). We preprocess the data including object detection, and parse text sentences. The preprocessed data is in PreprocessedVOA.

M2E2 (Multimedia Event Extraction Benchmark)

The images and text articles are in m2e2_rawdata, and annotations are in m2e2_annotation.

Vocabulary

Preprocessed vocabulary is in PreprocessedVocab.

Quickstart

Training

We have two variants to parse images into situation graph, one is parsing images to role-driven attention graph, and another is parsing images to object graphs.

(1) attention-graph based version

sh scripts/train/train_joint_att.sh 

(2) object-graph based version:

sh scripts/train/train_joint_obj.sh 

Please specify the data paths datadir, glovedir in scripts.

Testing

(1) attention-graph based version

sh test_joint.sh

(2) object-graph based version:

sh test_joint_object.sh

Please specify the data paths datadir, glovedir, and model paths checkpoint_sr, checkpoint_sr_params, checkpoint_ee, checkpoint_ee_params in scripts.

Citation

Manling Li, Alireza Zareian, Qi Zeng, Spencer Whitehead, Di Lu, Heng Ji, Shih-Fu Chang. 2020. Cross-media Structured Common Space for Multimedia Event Extraction. Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics.

@inproceedings{li2020multimediaevent,
    title={Cross-media Structured Common Space for Multimedia Event Extraction},
    author={Manling Li and Alireza Zareian and Qi Zeng and Spencer Whitehead and Di Lu and Heng Ji and Shih-Fu Chang},
    booktitle={Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics},
    year={2020}
Owner
Manling Li
Manling Li
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023