CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

Related tags

Deep LearningCSAC
Overview

CSAC

Introduction

This repository contains the implementation code for paper:

Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

Junkun Yuan, Xu Ma, Defang Chen, Kun Kuang, Fei Wu, Lanfen Lin

arXiv preprint, 2021

[arXiv]

Brief Abstract for the Paper


The existing domain generalization (DG) methods usually exploit the fusion of shared multi-source data for capturing domain invariance and training a generalizable model, which raises a dilemma between the generalization learning with shared multi-source data and the privacy protection of real-world sensitive data.

We introduce a separated domain generalization task with separated source datasets that can only be accessed locally for data privacy protection.

We propose a novel solution called Collaborative Semantic Aggregation and Calibration (CSAC) to enable this challenging task via local semantic acquisition, data-free semantic aggregation, and cross-layer semantic calibration.

Requirements

You may need to build suitable Python environment by installing the following packages (Anaconda is recommended).

  • python 3.8
  • pytorch 1.8.1 (with cuda 11.3)
  • torchvision 0.9.1
  • tensorboardx 2.4
  • numpy 1.21
  • qpsolvers 1.7

Device:

  • GPU with VRAM > 11GB (strictly).
  • Memory > 8GB.

Data Preparation

We list the adopted datasets in the following.

Datasets Download link
PACS [1] https://dali-dl.github.io/project_iccv2017.html
VLCS [2] http://www.mediafire.com/file/7yv132lgn1v267r/vlcs.tar.gz/file

Please note:

  • Our dataset split follows previous works like RSC (Code) [3].
  • Although these datasets are open-sourced, you may need to have permission to use the datasets under the datasets' license.
  • If you're a dataset owner and do not want your dataset to be included here, please get in touch with us via a GitHub issue. Thanks!

Usage

  1. Prepare the datasets.
  2. Update root_dir in configs/datasets/dg/pacs.yaml/ and configs/datasets/dg/vlcs.yaml/ with the paths of PACS and VLCS datasets, respectively.
  3. Run the code with command:
nohup sh run.sh > run.txt 2>&1 &
  1. Check results in logs/(dataset)_(network)/(target domain)/(time)/logs.txt .

Citation

If you find our code or idea useful for your research, please consider citing our work.

@article{yuan2021collaborative,
  title={Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization},
  author={Yuan, Junkun and Ma, Xu and Chen, Defang and Kuang, Kun and Wu, Fei and Lin, Lanfen},
  journal={arXiv e-prints},
  pages={arXiv--2110},
  year={2021}
}

Contact

If you have any questions, feel free to contact us through email ([email protected] or [email protected]) or GitHub issues. Thanks!

References

[1] Li, Da, et al. "Deeper, broader and artier domain generalization." Proceedings of the IEEE international conference on computer vision. 2017.

[2] Fang, Chen, Ye Xu, and Daniel N. Rockmore. "Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias." Proceedings of the IEEE International Conference on Computer Vision. 2013.

[3] Huang, Zeyi, et al. "Self-challenging improves cross-domain generalization." Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16. Springer International Publishing, 2020.

Owner
ScottYuan
CS PhD student.
ScottYuan
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022