ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

Overview

PENet: Precise and Efficient Depth Completion

This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Efficient Image Guided Depth Completion", developed by Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and Xiaojin Gong at Zhejiang University and Huawei Shanghai.

Create a new issue for any code-related questions. Feel free to direct me as well at [email protected] for any paper-related questions.

Results

  • The proposed full model ranks 1st in the KITTI depth completion online leaderboard at the time of submission.
  • It infers much faster than most of the top ranked methods.
  • Both ENet and PENet can be trained thoroughly on 2x11G GPU.
  • Our network is trained with the KITTI dataset alone, not pretrained on Cityscapes or other similar driving dataset (either synthetic or real).

Method

A Strong Two-branch Backbone

Revisiting the popular two-branch architecture

The two-branch backbone is designed to thoroughly exploit color-dominant and depth-dominant information from their respective branches and make the fusion of two modalities effective. Note that it is the depth prediction result obtained from the color-dominant branch that is input to the depth-dominant branch, not a guidance map like those in DeepLiDAR and FusionNet.

Geometric convolutional Layer

To encode 3D geometric information, it simply augments a conventional convolutional layer via concatenating a 3D position map to the layer’s input.

Dilated and Accelerated CSPN++

Dilated CSPN

we introduce a dilation strategy similar to the well known dilated convolutions to enlarge the propagation neighborhoods.

Accelerated CSPN

we design an implementation that makes the propagation from each neighbor truly parallel, which greatly accelerates the propagation procedure.

Contents

  1. Dependency
  2. Data
  3. Trained Models
  4. Commands
  5. Citation

Dependency

Our released implementation is tested on.

  • Ubuntu 16.04
  • Python 3.7.4 (Anaconda 2019.10)
  • PyTorch 1.3.1 / torchvision 0.4.2
  • NVIDIA CUDA 10.0.130
  • 4x NVIDIA GTX 2080 Ti GPUs
pip install numpy matplotlib Pillow
pip install scikit-image
pip install opencv-contrib-python==3.4.2.17

Data

  • Download the KITTI Depth Dataset and KITTI Raw Dataset from their websites. The overall data directory is structured as follows:
├── kitti_depth
|   ├── depth
|   |   ├──data_depth_annotated
|   |   |  ├── train
|   |   |  ├── val
|   |   ├── data_depth_velodyne
|   |   |  ├── train
|   |   |  ├── val
|   |   ├── data_depth_selection
|   |   |  ├── test_depth_completion_anonymous
|   |   |  |── test_depth_prediction_anonymous
|   |   |  ├── val_selection_cropped
├── kitti_raw
|   ├── 2011_09_26
|   ├── 2011_09_28
|   ├── 2011_09_29
|   ├── 2011_09_30
|   ├── 2011_10_03

Trained Models

Download our pre-trained models:

Commands

A complete list of training options is available with

python main.py -h

Training

Training Pipeline

Here we adopt a multi-stage training strategy to train the backbone, DA-CSPN++, and the full model progressively. However, end-to-end training is feasible as well.

  1. Train ENet (Part Ⅰ)
CUDA_VISIBLE_DEVICES="0,1" python main.py -b 6 -n e
# -b for batch size
# -n for network model
  1. Train DA-CSPN++ (Part Ⅱ)
CUDA_VISIBLE_DEVICES="0,1" python main.py -b 6 -f -n pe --resume [enet-checkpoint-path]
# -f for freezing the parameters in the backbone
# --resume for initializing the parameters from the checkpoint
  1. Train PENet (Part Ⅲ)
CUDA_VISIBLE_DEVICES="0,1" python main.py -b 10 -n pe -he 160 -w 576 --resume [penet-checkpoint-path]
# -he, -w for the image size after random cropping

Evalution

CUDA_VISIBLE_DEVICES="0" python main.py -b 1 -n p --evaluate [enet-checkpoint-path]
CUDA_VISIBLE_DEVICES="0" python main.py -b 1 -n pe --evaluate [penet-checkpoint-path]
# test the trained model on the val_selection_cropped data

Test

CUDA_VISIBLE_DEVICES="0" python main.py -b 1 -n pe --evaluate [penet-checkpoint-path] --test
# generate and save results of the trained model on the test_depth_completion_anonymous data

Citation

If you use our code or method in your work, please cite the following:

@article{hu2020PENet,
	title={Towards Precise and Efficient Image Guided Depth Completion},
	author={Hu, Mu and Wang, Shuling and Li, Bin and Ning, Shiyu and Fan, Li and Gong, Xiaojin},
	booktitle={ICRA},
	year={2021}
}

Related Repositories

The original code framework is rendered from "Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera". It is developed by Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac Karaman at MIT.

The part of CoordConv is rendered from "An intriguing failing of convolutional neural networks and the CoordConv".

A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022