A lightweight deep network for fast and accurate optical flow estimation.

Overview

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation

The official PyTorch implementation of FastFlowNet (ICRA 2021).

Authors: Lingtong Kong, Chunhua Shen, Jie Yang

Network Architecture

Dense optical flow estimation plays a key role in many robotic vision tasks. It has been predicted with satisfying accuracy than traditional methods with advent of deep learning. However, current networks often occupy large number of parameters and require heavy computation costs. These drawbacks have hindered applications on power- or memory-constrained mobile devices. To deal with these challenges, in this paper, we dive into designing efficient structure for fast and accurate optical flow prediction. Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations. First, a new head enhanced pooling pyramid (HEPP) feature extractor is employed to intensify high-resolution pyramid feature while reducing parameters. Second, we introduce a novel center dense dilated correlation (CDDC) layer for constructing compact cost volume that can keep large search radius with reduced computation burden. Third, an efficient shuffle block decoder (SBD) is implanted into each pyramid level to acclerate flow estimation with marginal drops in accuracy. The overall architecture of FastFlowNet is shown as below.

NVIDIA Jetson TX2

Optimized by TensorRT, proposed FastFlowNet can approximate real-time inference on the Jetson TX2 development board, which represents the first real-time solution for accurate optical flow on embedded devices. For training, please refer to PWC-Net and IRR-PWC, since we use the same datasets, augmentation methods and loss functions. Currently, only pytorch implementation and pre-trained models are available. A demo video for real-time inference on embedded device is shown below, note that there is time delay between real motion and visualized optical flow.

Optical Flow Performance

Experiments on both synthetic Sintel and real-world KITTI datasets demonstrate the effectiveness of proposed approaches, which consumes only 1/10 computation of comparable networks (PWC-Net and LiteFlowNet) to get 90% of their performance. In particular, FastFlowNet only contains 1.37 M parameters and runs at 90 or 5.7 fps with one desktop NVIDIA GTX 1080 Ti or embedded Jetson TX2 GPU on Sintel resolution images. Comprehensive comparisons among well-known flow architectures are listed in the following table. Times and FLOPs are measured on Sintel resolution images with PyTorch implementations.

Sintel Clean Test (AEPE) KITTI 2015 Test (Fl-all) Params (M) FLOPs (G) Time (ms) 1080Ti Time (ms) TX2
FlowNet2 4.16 11.48% 162.52 24836.4 116 1547
SPyNet 6.64 35.07% 1.20 149.8 50 918
PWC-Net 4.39 9.60% 8.75 90.8 34 485
LiteFlowNet 4.54 9.38% 5.37 163.5 55 907
FastFlowNet 4.89 11.22% 1.37 12.2 11 176

Some visual examples of our FastFlowNet on several image sequences are presented as follows.

Usage

Our experiment environment is with CUDA 9.0, Python 3.6 and PyTorch 0.4.1. First, you should build and install the Correlation module in ./model/correlation_package/ with command below

$ python setup.py build
$ python setup.py install

To benchmark running speed and calculate model parameters, you can run

$ python benchmark.py

A demo for predicting optical flow given two time adjacent images, please run

$ python demo.py

Note that you can change the pre-trained models from different datasets for specific applications. The model ./checkpoints/fastflownet_ft_mix.pth is fine-tuned on mixed Sintel and KITTI, which may obtain better generalization ability.

License and Citation

This software and associated documentation files (the "Software"), and the research paper (FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation) including but not limited to the figures, and tables (the "Paper") are provided for academic research purposes only and without any warranty. Any commercial use requires my consent. When using any parts of the Software or the Paper in your work, please cite the following paper:

@inproceedings{Kong:2021:FastFlowNet, 
 title = {FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation}, 
 author = {Lingtong Kong and Chunhua Shen and Jie Yang}, 
 booktitle = {2021 IEEE International Conference on Robotics and Automation (ICRA)}, 
 year = {2021}
}
Owner
Tone
Computer Vision, Deep Learning
Tone
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022